CBSE Class 12 Physics Question Paper Solution

Sr. No.	Value Points / Expected Answers	Marks	Total Marks
1.	SECTION - A $\mathrm{E}=0$ inside the conductor \& has no tangential component on the surface. \therefore No work is done in moving charge inside or on the surface of the conductor. \&Potential is constant. [Even if a student writes "because $\mathrm{E}=0$ inside the conductor" - award full marks Or No work is done in moving a charge inside the conductor - award full marks.]	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
2.	Any one property of paramagnetic materials. (e.g. (i) It attracts field lines, weakly. (ii) It moves from weaker towards stronger field. or any other property.) No.	1 1	1
3.	[If only the graph is drawn by the student, award full one mark]	$1 / 2$ $1 / 2$	1
4.	$\mathrm{oV} \cdots \cdots$	1	1
5.		$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
6.	Diagram - $1 / 2$ Expression for torque - 1 Direction of torque - $1 / 2$		

Force on either charge $\mathrm{F}=\mathrm{qE}$
Magnitude of torque $=$ Either of force $X \perp$ distance between them.

$$
\begin{aligned}
& \tau=\mathrm{qE} 2 \mathrm{a} \sin \theta \\
& \tau=\mathrm{pE} \sin \theta
\end{aligned}
$$

$$
\xrightarrow[\mathrm{pxE}]{\rightarrow}
$$

Direction is normal to the paper coming out of it.

OR

Expression for field at an axial point - $1 \frac{1}{2}$
Field at large distance - $1 / 2$

$E_{-}=\frac{q}{4 \pi \varepsilon_{0}(r+a)^{2}} \operatorname{along}(-) \vec{p}$
$E_{+}=\frac{q}{4 \pi \varepsilon_{0}(r+a)^{2}}$ along \vec{p}
\therefore Total field at $P, E=E_{-}-E_{+}$
$=\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{1}{(r-a)^{2}}-\frac{1}{(r+a)^{2}}\right]$
$=\frac{q}{4 \pi \varepsilon_{0}} \frac{2 p r}{\left(r^{2}-a^{2}\right)^{2}}$
For
$r\rangle\rangle a$
$E=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 p}{r^{3}}$

7.	Energy stored in series combination - 1 Energy stored in parallel combination - 1 $\begin{aligned} & C_{s}=6 \mathrm{pF} \\ & \begin{aligned} E_{s}=\frac{1}{{ }^{2}} C_{s} \mathrm{~V}^{2}=\frac{1}{2} \times 6 \times 10^{-12} \times 50 \times 50 & =7500 \times 10^{-12} \mathrm{~J} 2 \\ & =7.5 \times 10^{-9} \mathrm{~J} \end{aligned} \end{aligned}$ $\begin{aligned} C_{p} & =24 p F \\ E_{P} & =\frac{1}{2} C_{p} V^{2}=\frac{1}{2} \times 24 \times 50 \times 50 \times 10^{-12} \\ & =3 \times 10^{-8} \mathrm{~J} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2
8.	Expression for X - $1 / 2$ Expression for Y - $1 / 2$ Expression for product XY - 1 $\mathrm{X}=\mathrm{nR}$ $Y=\frac{R}{n}$ $\mathrm{XY}=R^{2}$	$\begin{gathered} 1 / 2 \\ 1 / 2 \\ 1 \end{gathered}$	2
9.	$\begin{aligned} & B_{1}=\frac{\mu O I}{2 R} \\ & \begin{aligned} & B_{2}=\frac{\mu O \sqrt{3} I}{2 R} \\ & B=\sqrt{B_{1}^{2}+B_{2}^{2}} \\ &=\sqrt{\left(\frac{\mu O I}{2 R}\right)^{2}+\left(\frac{\mu O \sqrt{3} I}{2 R}\right)^{2}} \\ & B=\frac{\mu O I}{R} \\ & \text { For Direction } \end{aligned} \end{aligned}$ B $\tan \theta=\frac{B_{1}}{B_{2}} \Rightarrow \theta=30^{\circ}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2

\begin{tabular}{|c|c|c|c|}
\hline 10. \& \begin{tabular}{l}
a) Condition for no deflection - \\
b) Conclusion for greater radius - \\
(a) No deflection if electron moves parallel or anti parallel to the magnetic field \\
(b)
\[
\begin{aligned}
\& r=\frac{m v}{B q} \\
\& \frac{r_{1}}{r_{2}}=\frac{B_{2}}{B_{1}} \\
\& \text { As } \quad B_{1}\left\langleB _ { 2 } \quad r _ { 2 } \left\langle r_{1}\right.\right.
\end{aligned}
\] \\
Alternatively
\[
\left[r=\frac{l}{B}\right.
\] \\
\(r_{2}\) is smaller because \(B\)]
\end{tabular} \& 1
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$ \& 2

\hline 11. \& | Expression for frequency of side bands - $1 / 2$
 Carrier frequency - $1 / 2$
 Modulating frequency - $1 / 2$
 Band width - $1 / 2$$\begin{gathered} f_{u}=f_{c}+f_{m}=660 \mathrm{kHz} \\ f_{l}=f_{c-} f_{m}=640 \mathrm{kHz} \\ \therefore 2 f_{c}=1300 \mathrm{kHz} \\ \therefore f_{c}=650 \mathrm{kHz} \end{gathered}$ |
| :--- |
| and $2 f_{\mathrm{m}}=20 \mathrm{kHz}$ $f m=10 \mathrm{kHz}$ |
| Band width $=f_{\mathrm{u}}-f_{1}$ $\begin{aligned} & =2 f_{\mathrm{m}} \\ & =20 \mathrm{kHz} \end{aligned}$ |
| OR |
| Frequency of two side bands - |
| Amplitude of side bands - $f_{u}=f_{c}+f_{m}=(10000+10) \mathrm{kHz}$ | \& 1/2 \&

\hline
\end{tabular}

BBYJu'S

\begin{tabular}{|c|c|c|c|}
\hline \& $$
\begin{aligned}
& \quad=10010 \mathrm{kHz} \\
& f_{l}=f_{\mathrm{c}}-f_{\mathrm{m}}=(10000-10) \mathrm{kHz} \\
& =9990 \mathrm{kHz} \\
& \text { Amplitude of Side bands }=\mu \frac{A_{C}}{2} \\
& =0.3 \times \frac{40}{2}=6 \mathrm{~V}
\end{aligned}
$$ \& $1 / 2$

$1 / 2$

$1 / 2$
$1 / 2$ \& 2

\hline 12. \& | Block diagram - 1
 Function of Transmitter - $1 / 2$
 Function of Receiver - $1 / 2$ |
| :--- |
| Transmitter: A transmitter processes the incoming message signal so as to make it suitable for transmission through a channel and subsequent reception. |
| Receiver: A receiver extracts the desired message signals from the received signals at the channel output. | \& 1

$1 / 2$
$1 / 2$ \& 2

\hline 13 \& | Expression for total Q. - |
| :--- |
| Expression for common potential - | \& \&

\hline
\end{tabular}

$$
\begin{aligned}
Q & =q_{1}+q_{2} \\
& =4 \pi \sigma\left(r^{2}+R^{2}\right)
\end{aligned}
$$

Potential at common centre

$$
\begin{aligned}
V & =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{1}}{r}+\frac{q_{2}}{R}\right] \\
& =\frac{1}{4 \pi \varepsilon_{0}} \times\left[\frac{4 \pi r^{2} \sigma}{r}+\frac{4 \pi R^{2} \sigma}{R}\right] \\
& =\frac{(r+R) \sigma}{\varepsilon_{0}} \\
& =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{Q(r+R)}{r^{2}+R^{2}}\right]
\end{aligned}
$$

OR

Expressions for potential of shells $\mathrm{A}, \mathrm{B}, \mathrm{C}-$
$1+1+1 / 2$
Relation $\mathrm{b} / \mathrm{w} \mathrm{a}, \mathrm{b}, \mathrm{c}$
(a)

$$
\begin{aligned}
& V_{A}=\frac{k Q_{A}}{a}+\frac{k Q_{B}}{b}+\frac{k Q_{C}}{c} \\
& V_{A}=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{4 \pi a^{2} \sigma}{a}-\frac{4 \pi b^{2} \sigma}{b}+\frac{4 \pi c^{2} \sigma}{c}\right] \\
& =\frac{\sigma}{\varepsilon_{0}}[a-b+c] \\
& V_{B}=\frac{k Q_{A}}{b}+\frac{k Q_{B}}{b}+\frac{k Q_{C}}{c} \\
& V_{B}=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{4 \pi a^{2} \sigma}{b}-\frac{4 \pi b^{2} \sigma}{b}+\frac{4 \pi c^{2} \sigma}{c}\right]
\end{aligned}
$$

$V_{B}=\frac{\sigma}{\varepsilon_{0}}\left[\frac{a^{2}-b^{2}}{b}+c\right]$
$V_{C}=\frac{k Q_{A}}{c}+\frac{k Q_{B}}{c}+\frac{k Q_{C}}{c}$
$V_{C}=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{4 \pi a^{2} \sigma}{c}-\frac{4 \pi b^{2} \sigma}{c}+\frac{4 \pi c^{2} \sigma}{c}\right]$
$=\frac{\sigma}{\varepsilon_{0}}\left[\frac{a^{2}-b^{2}+c^{2}}{c}\right]$
(b)
$V_{A}=V_{C}$
$a-b+c=\frac{a^{2}-b^{2}}{c}+c$
14.

Principle -
Working \& expression for deflection -
Current Sensitivity -
Principle - A current carrying coil experiences a torque in a magnetic field.
Working - When current is passed through the coil torque produced is
$\tau=$ NIAB $\sin \theta=$ NIAB $\left(\theta=90^{\circ}\right)$
Restoring torque $\tau^{\prime}=\mathrm{k} \phi$ At equilibrium $\tau=\tau^{\prime}$
NIAB $=\mathrm{k} \phi$
$\phi=\left(\frac{N A B}{k}\right) I$
Current sensitivity: $\frac{\phi}{I}=\frac{N A B}{k}$
[Alternatively: It is deflection per unit current]
OR PART
Conversion of galvanometer into ammeter 1

Expression for shunt resistance 1

Effective resistance of ammeter 1

A galvanometer is converted into an ammeter when a suitable shunt resistance is connected in parallel with the galvanometer.

[Award full one mark even if no figure drawn or only the figure is drawn]

\begin{tabular}{|c|c|c|c|}
\hline \& $$
\begin{aligned}
& \mathrm{S} / \mathrm{K}=(I-l g) S \\
& \mathrm{~S}=\left(\frac{1 g}{l-1 g}\right) \mathrm{G} \\
& \mathrm{R}_{\epsilon / 7}=\frac{G S}{G+S}
\end{aligned}
$$ \& $1 / 2$
$1 / 2$

1 \& 3

\hline 15. \& | Derivation of expression for average power - 1 |
| :--- |
| Definition of Power factor and it's maximum value - 1 |
| Wattless current and it's example - $\begin{aligned} & P_{i}=V_{m} \sin w t I_{m} \sin (w t+\Phi) \\ & =V_{m} I_{m} \sin w t[\sin w t \cos \Phi+\cos w t \sin \Phi] \\ & P=V I \sin ^{2} w t \cos \Phi+\frac{2 V_{m} I_{m}}{2} \sin w t \cos w t \sin \Phi \\ & V_{m} I_{m} \sin w t \cos \Phi+\frac{V_{m} I_{m}}{2} \sin 2 w t \sin \Phi \\ & P_{a v}=\frac{\int_{o}^{T} P_{i} d t}{T} \\ & =\frac{1}{T}\left[V_{m} I_{m} \int_{o}^{T}\left(\frac{1-\cos \Phi}{2}\right) \cos \Phi d t+\int_{o}^{T} V_{m} I_{m} \frac{\sin 2 w t \sin \Phi d t}{2}\right] \\ & P_{a v}=\frac{V_{m} I_{m} \cos \Phi}{2 T} \int_{o}^{T} d t=\frac{V_{m}}{\sqrt{2}} X \frac{I_{m}}{\sqrt{2}} \cos \Phi \end{aligned}$ |
| Power factor - $\cos \phi$ factor in $\mathrm{P}_{a v}$ is power factor. |
| [Alternatively: Factor $\cos \phi$ in $\mathrm{P}_{a v}$ which decides power consumed by an ac circuit] A resistive circuit has maximum power factor. |
| [Alternatively : $\begin{aligned} & \cos \phi=\frac{R}{Z} \\ & \cos \phi=1 \\ & \Rightarrow R=Z \end{aligned}$ |
| Wattless Current - A current which has a phase difference of $\pi / 2$ with voltage is | \& | $1 / 2$ |
| :--- |
| $1 / 2$ | \& 3

\hline 16. \& | Definition of displacement current - | 1 |
| :--- | :--- |
| Expression for displacement current - | 1 |
| Value of displacement current - | 1 | \& \&

\hline
\end{tabular}

Displacement current is the current due to the changing of electric flux.
It provides continuity of current in circuits containing capacitor.

$$
I_{d}=\varepsilon_{o} \frac{d \phi_{e}}{d t}
$$

Yes, the value of displacement is equal to the conduction current.
[Explanation not required]
17.

Value of $v+u$	$1 / 2$
Value of $v-u$	$1 / 2$
Calculation of v and u	1
Calculation of f	1

$\mathrm{v}+\mathrm{u}=90$
$\mathrm{v}-\mathrm{u}=20$
$\mathrm{v}=55 \mathrm{~cm}$
$\mathrm{u}=35 \mathrm{~cm}$
$f=\frac{55 x 35}{55+35}=21.4 \mathrm{~cm}$
[or any other correct method used]
OR

Diagram	$1 / 2$
Image distance for convex lens	1
Image distance for concave lens	1
Explanation of the result change	$1 ⁄ 2$

$$
\underbrace{k}_{0}+30 \mathrm{~cm}-30 \mathrm{~cm}-30 \mathrm{~cm} \longrightarrow
$$

For Image formed by convex lens:
$\frac{1}{f}=\frac{1}{v}-\frac{1}{u}$
$\frac{1}{20}=\frac{1}{v}+\frac{1}{30}$
$v=\frac{20 X 30}{30-20}=60 \mathrm{~cm}$
u for concave lens $=+30 \mathrm{~cm}$

$$
\begin{aligned}
& \frac{1}{f}=\frac{1}{v}-\frac{1}{u} \\
& \frac{1}{-15}=\frac{1}{v}-\frac{1}{30}
\end{aligned}
$$

$$
v=\frac{15 X 30}{15-30}=-30 \mathrm{~cm}
$$

No, the result will not change from principle of reversibility
18.
(a) Definition of Wave front

Geometrical Construction \& explanation
$1 / 2+1 / 2$
(b) Shape of Wave front

1
(a) Wave front: It is the locus of the medium or points of a medium which are in the same phase of disturbance

Geometrical Construction :

The wave is propagating to the right. $\mathrm{F}_{1} \mathrm{~F}_{2}$ is the plane wavefront at $t=0 \& \mathrm{G}_{1} \mathrm{G}_{2}$ is the wave front at a later time t, the lines $A_{1}, A_{2}, B_{1} B_{2} \ldots$..etc. are normal to both $F_{1} F_{2}$ and $G_{1} G_{2}$ represent rays. $A_{1} A_{2}=$ $\mathrm{B}_{1} \mathrm{~B}_{2}=\mathrm{c} \tau$

(b)Spherical Wave front

		1/2	3
19.	(a) Reason to use polaroid 1 (b) Explanation 1 (c) Graph 1 (a) Polaroid sunglasses are preferred over colored sun glasses, because they reduce intensity of light (b) Light in which vibrations of electric field vector are restricted to one plane containing direction of propagation (c)	1 1	3
20.	(a) Einstein equation $1 / 2$ Equation of line $1 / 2$ Planck's constant $1 / 2$ (b) Expression for work function 1 (c) Expression for threshold frequency $1 / 2$ (a) Einstein, Photoelectric equation $\begin{aligned} & \mathrm{K}_{\max }=\frac{1}{2} \mathrm{mv}_{\max }^{2}=\mathrm{h} v-\phi_{0} \\ & \mathrm{~V}_{\max }^{2}=\left(\frac{2 h}{m}\right) v-\frac{2 \phi_{0}}{m} \end{aligned}$ Slope of the graph is $\frac{2 h}{m}=\frac{l}{n}$	$1 / 2$ $1 / 2$	

(a) Einstein, Photoelectric equation

$$
\begin{aligned}
& \mathrm{K}_{\max }=\frac{1}{2} \mathrm{mv}_{\max }^{2}=\mathrm{h} v-\phi_{0} \\
& \mathrm{~V}_{\max }^{2}=\left(\frac{2 h}{m}\right) v-\frac{2 \phi_{0}}{m}
\end{aligned}
$$

Slope of the graph is $\frac{2 h}{m}=\frac{l}{n}$

$$
\text { Planck constant } \mathrm{h}=\frac{l m}{2 n}
$$

(b) Intercept on $\mathrm{V}^{2}{ }_{\text {max }}$, axis, $\frac{2 \phi_{0}}{m}=l$

Work function $\phi_{0}=\frac{m l}{2}$
(c) Threshold frequency is the intercept on v axis i.e. $\mathrm{v}_{0}=\mathrm{n}$
$\frac{r_{\mu}}{r_{e}}=\frac{m_{e}}{m_{\mu}}=\frac{1}{207}$
$\therefore r_{\mu}=2.56 \times 10^{-13} \mathrm{~m}$
Energy of electron in $\mathrm{n}^{\text {th }}$ orbit

$$
E_{n}=\frac{-2 \pi^{2} m e^{4}}{n^{2} h^{2}}
$$

$E_{n} \propto m_{e}($ as $n=1)$
$\therefore \frac{E_{\mu}}{E_{e}}=\frac{m_{\mu}}{m_{e}}=207$
$\therefore E_{\mu}=207 E_{e}$

$$
=-207 \times 13.6 \mathrm{eV}
$$

$$
=-2.8 \mathrm{keV}
$$

[Even if a student writes correct expressions for \mathbf{r}_{n} and E_{n} or correct proportionality relation $r_{n} \alpha n^{2}$ and $E_{n} \alpha 1 / n^{2}$ award full mark]
22.

(a) Defining Isotopes and example	$1 / 2+1 / 2$
Defining Isobars and example	$1 / 2+1 / 2$
Example of each	$1 / 2+1 / 2$
(b) Mass of nuclear $\&$ example	

(a) Isotopes have same atomic number \& isobars have same mass number

Examples of Isotopes ${ }_{6}^{12} \mathrm{C},{ }_{6}^{14} \mathrm{C}$
Examples Isobars $\quad{ }_{2}^{3} \mathrm{He},{ }_{1}^{3} \mathrm{H}$
$1 / 2+1 / 2$
(b) Mass of a nucleus is less than its constituents because in the bound state. some mass is converted into binding energy which is energy equivalent of mass defect e.g. mass of ${ }_{8}^{16} O$ nucleus is less than the sum of masses of 8 protons and 8 neutrons

OR
(a) Classification of nuclides $1 / 2+1 / 2+1 / 2$
(b) Non dependence of nuclear density $11 / 2$ on size of nucleus
(i) Isotones: ${ }_{80}^{198} \mathrm{Hg}$ \& ${ }_{79}^{197} \mathrm{Au}$
(ii) Isotopes: ${ }_{6}^{12} \mathrm{C},{ }_{6}^{14} \mathrm{C}$
(iii) For Isobars: ${ }_{2}^{3} \mathrm{He},{ }_{1}^{3} \mathrm{H}$
$1 / 2$
The radius of a nucleus having mass number A is

$$
\mathrm{R}=r_{o} A^{1 / 3}
$$

r_{o} is constant.
Volume of the nucleus $=\frac{4}{3} \pi R^{3}=\frac{4}{3} \pi\left(r_{o} A^{1 / 3}\right)^{3}$

$$
=\frac{4}{3} \pi\left(r_{o}\right)^{3} A
$$

If ' m ' be the average mass of a nucleon then mass of the nucleus $=\mathrm{mA}$

Nuclear density $=\frac{\text { mass }}{\text { Volume }}=\frac{m A}{\frac{m A}{4} \pi\left(r_{o}\right)^{3} A}=\frac{3 m}{4 \pi r_{o}^{3}}$
i.e. nuclear density is independent of the size of the nucleus.
23.
(a)

The diode used is Zener diode
(b)

The Zener diode can be used as a voltage regulator n its breakdown region. The Zener voltage
remains constant even when the current through the Zener diode changes.
[Award this one mark even if the student just writes" the Zener diode can be used as voltage regulator"]
[This one mark can also be awarded if student draws only the circuit diagram of a Zener diode as a voltage regulator]
(a) Three segments of transistor
$1 / 2+1 / 2+1 / 2$
(b) Graph and required portion
$1+1 / 2$
i) Emitter : It is of moderate size and heavily doped semi conductor.
ii) Base - It is very thin and lighly doped.
iii) Collector - It is moderately doped and larger in size than the emitter.

Saturation region

In the graphs the active region of the transfer characteristics is used for the amplification purpose. This is because in this region I_{C} increases almost linearly with the increase of V_{i}.
a) Relation between E, V, r 1

Graph V v/s I
Significance of graph 1
b) Current in voltmeter 1

Potential difference across voltmeter $1 / 2$
Percentage Error 1⁄2
(a)

$\mathrm{E}-\mathrm{IR}-\mathrm{rI}=0$
$\mathrm{E}-\mathrm{V}-\mathrm{Ir}=0$
$\mathrm{E}=\mathrm{V}+\mathrm{Ir}$
[Award 1 mark even if student writes the relation directly]

Significance of Graph - To find cmf and internal resistance of cell.
(b)

$\mathrm{V}=\mathrm{E}-\mathrm{Ir}$
$998 \times \mathrm{I}=2-2 \mathrm{I}$
$1000 \times \mathrm{I}=2$
$\mathrm{I}=\frac{2}{1000}=.002 \mathrm{~A}$
$\mathrm{V}=.002 \times 998$
$\mathrm{V}=1.996 \mathrm{~V}$
$\%$ error $=\frac{.004}{2} \times 100=20 \%$
a) Expression of current in terms of E and V 1

Expression of voltage in terms of emf and internal resistance Expression for Eeq and req
b) Value of current \& value of internal resistance
(a)

三

$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}$
Potential difference across $B_{1} B_{2}$
$\mathrm{V}=\mathrm{E}_{1}-\mathrm{I}_{1} \mathrm{r}_{1} \quad \Rightarrow \mathrm{I}_{1} \quad=\mathrm{E}_{1}-\mathrm{V}$
$\mathrm{V}=\mathrm{E}_{2}-\mathrm{I}_{2} \mathrm{r}_{2} \quad \Rightarrow \mathrm{I}_{2} \quad=\frac{\mathrm{E}_{2}-\mathrm{V}}{\mathrm{r}_{2}}$
$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}$
$=\frac{E_{1}-\mathrm{V}}{r_{1}}+\frac{E_{2}-\mathrm{V}}{r_{2}}$
$=\left(\frac{E_{1}}{r_{1}}+\frac{E_{2}}{r_{2}}\right)-\mathrm{V}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)$
$\mathrm{V}=\frac{E_{1} r_{2}+E_{2} r_{1}}{r_{1}+r_{2}} \quad-\frac{\mathrm{I} r_{1} r_{2}}{r_{1}+r_{2}}$
Compare with

$$
\begin{aligned}
& \mathrm{V}=\mathrm{E} \text { eq }-\mathrm{I} \mathrm{r}_{\mathrm{eg}} \\
& E_{e q}=\frac{E_{1} r_{2}+E_{2} r_{1}}{r_{1}+r_{2}} \\
& r_{e q}=\frac{r_{1} r_{2}}{r_{1}+r_{2}}
\end{aligned}
$$

(b)

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Equivalent circuit
\[
I=\frac{V}{R_{e q}}=\frac{1.4}{8.5} \mathrm{~A}
\] \\
And
\[
\begin{aligned}
\& V=E_{e q}-I r_{e q} \\
\& \Rightarrow 1.4=1.5-\frac{1.4}{8.5} X \frac{r}{2} \\
\& \Rightarrow r=1.21 \Omega
\end{aligned}
\]
\end{tabular} \& 1

1 \& 5

\hline 26. \& | (a) (i)Expression induced emf \& current $1+1$
 (ii)For force and its direction $11 / 2$
 (iii)Expression for power 1
 (b) Effect on the force $1 / 2$ |
| :--- |
| (i) $\begin{aligned} & \varepsilon^{\prime}=B l v \\ & \varepsilon=B l \frac{v}{2} \\ & \varepsilon=B l\left(\frac{l \omega}{2}\right) \\ & \varepsilon=\frac{b l^{2} \omega}{2} \\ & I=\frac{\varepsilon}{R}=\frac{b l^{2} \omega}{2 R} \end{aligned}$ |
| [Student may use any method to arrive at this result] | \& 1

1 \&

\hline
\end{tabular}

(ii) $\mathrm{F}=\mathrm{I}(1 \times \mathrm{b})$

$$
F=\frac{b l^{3} \omega B}{2 R}
$$

Direction of force is perpendicular to both $\overrightarrow{1}$ and \vec{B}
iii)

$$
\begin{aligned}
& \text { Power }=i^{2} R=\left(\frac{b l^{2} \omega}{2 R}\right)^{2} R \\
& =\frac{b^{2} l^{4} \omega^{2}}{4 R}
\end{aligned}
$$

(b) Since induced current will reduce, it will be a little easier to remove the coil
[Even if student writes induced current decreases award $1 / 2$ mark]

OR

(a) Expression for induced emf and current

$$
11 / 2+1
$$

Their peak values $1 / 2+1 / 2$
Graph
(b) Nature of rod
(a)

$$
\begin{aligned}
& \phi=N \vec{B} \cdot \vec{A} \\
& \phi=N B A \cos \omega t \\
& \varepsilon=\frac{-d \phi}{d t} \\
& \varepsilon=N B A \omega \sin \omega t \\
& \text { here } \varepsilon_{0}=N B A \omega \\
& i=\frac{\varepsilon}{R}=\frac{N B A \omega}{R} \sin \omega t \\
& \qquad i_{0}=\frac{N B A \omega}{R}
\end{aligned}
$$

The magnifying power of compound microscope
(b)
$m=m_{0} \times m_{e}=\frac{L}{f_{0}} \times\left(1+\frac{D}{f_{e}}\right)$
To have high magnifying power and high resolution, the focal length of the objective and its aperture should be short.
Focal length of eyepiece is comparatively greater than the objective so that image formed by objective lens may form within the focal length of eyepiece and the final magnified image may be formed.
Aperture in short for higher resolution.
(c)
$u_{0}=-6 \mathrm{~cm}$
for objectivelens
$\frac{1}{f_{0}}=\frac{1}{v_{0}}-\frac{1}{u_{0}}$
$\frac{1}{v_{0}}=\frac{1}{f_{0}}+\frac{1}{u_{0}}=\frac{1}{4}+\frac{1}{-6}$
$v_{0}=12 \mathrm{~cm}$
Since for eyepiece $v_{e}=-D=-25 \mathrm{~cm}$
$\frac{1}{u_{e}}=\frac{1}{v_{e}}-\frac{1}{f_{e}}=\frac{1}{-25}-\frac{1}{10}$
$u_{e}=-7.14 \mathrm{~cm}$
(i) For magnifying power of compound microscope

$$
\begin{aligned}
& m=\frac{v_{o}}{u_{o}}\left(1+\frac{D}{f_{e}}\right) \\
& m=\frac{12}{6}\left(1+\frac{25}{10}\right)=7
\end{aligned}
$$

(ii) Length of Microscope

$$
\begin{aligned}
& L=v_{0}+\left|u_{e}\right|=12+7.14 \\
& L=19.14 \mathrm{~cm}
\end{aligned}
$$

OR

(a) Ray diagram and explanation	$2+1$
(b) Calculation of Sun's size	2

(a)

It consists for large concave (primary) paraboidal mirror having in its central part a hole. There is a small convex (secondary) mirror near the focus of concave mirror. Eye pieces if placed near the hole of the concave mirror .
The parallel rays from distance object are reflected by the large concave mirror. These rays fall on the convex mirror which reflects these rays outside the hole. The final magnified image in formed.
(b) For eyepiece.
$\frac{1}{v_{e}}-\frac{1}{u_{e}}=\frac{1}{f_{e}}$
or $\frac{1}{u_{e}}=\frac{1}{v_{e}}-\frac{1}{f_{e}}=\frac{1}{40}-\frac{1}{10}$
$u_{e}=\frac{40}{3} \mathrm{~cm}$

BBYJU'S
Magnification produced by eye pieces is
$m_{e}=\frac{v_{e}}{\left|u_{e}\right|}=\frac{40}{40 / 3}=3$
Diameter of the image formed by the objective is

$$
\mathrm{d}=6 / 3=2 \mathrm{~cm}
$$

If D be the diameter of the SUN then the angle subtended by it on the objective will be $\alpha=\frac{D}{1.5 \times 10^{11}} \mathrm{rad}$

Angle subtended by the image at the objective
$=$ angle subtended by the SUN
$\therefore \alpha=\frac{\text { size of image }}{f_{o}}=\frac{2}{200}=\frac{1}{100} \mathrm{rad}$.
$\therefore \frac{D}{1.5 \times 10^{11}}=\frac{1}{100}$
or
$D=1.5 \times 10^{9} \mathrm{~m}$

