CBSE Class 12 Chemistry Question Paper Solution 2015

QUESTION PAPER CODE 56/1/1

EXPECTED ANSWERS/VALUE POINTS

1. 3
2. 2,5-dinitrophenol
3. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Br}$

Because it is a primary halide $/\left(1^{0}\right)$ halide
4. $\quad \mathrm{BaCl}_{2}$ because it has greater charge / +2 charge
5. $X_{2} \mathrm{Y}_{3}$
6. Elements which have partially filled d-orbital in its ground states or any one of its oxidation states.

1) Variable oxidation states. $1 / 2+1 / 2$
2) Form coloured ion

Or any other two correct charactenstics
7. 1) Diamminedichloridoethylenediaminechromium(III) chloride $1+1$
2) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO})\right]^{2+}$
8. (i) $\mathrm{LiAIH}_{4} / \mathrm{NaBH}_{4} / \mathrm{H}_{2}, \mathrm{Pt} \quad 1$
(ii) $\mathrm{KMnO}_{4}, \mathrm{KOH}$
9. When vapour pressure of solution is higher than that predicted by Raoult's law / the intermolecular attractive forces between the solute-solvent/(A-B) molecules are weaker than those between the solute-solute and solvent-solvent molecules/ $\mathrm{A}-\mathrm{A}$ or $\mathrm{B}-\mathrm{B}$ molecules.

Eg. ethanol-acetone/cthanol-cyclohexane/ CS_{2}-acetone or any other correct example $\Delta_{\text {mix }} \mathrm{H}$ is positive

OR

(a) Azeotropcs are binary mixtures having the same composition in the liquid and
vapour phase and boil at a constant temperature.
(b) Minimum boiling azeotrope
eg - ethanol + water or any other example
10. (i) $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e} \rightarrow \mathrm{Ag}$ (s)

Reaction with higher E° value / ΔG^{0} negative $\quad 1 / 2$
(ii) Molar conductivity of a solution at infinite dilution or when concentration approaches zero

Number of ions per unit volume decreases 1/2
11. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K}_{\mathrm{f}} \mathrm{m}$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K}_{\mathrm{f}} \frac{w_{b} \times 1000}{M_{b} \times w_{a}}$
$1.62 \mathrm{~K}=\mathrm{i} \times 4.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \times \frac{3.9 \mathrm{~g}}{122 \mathrm{gmol}^{-1}} \times \frac{1000}{49 \mathrm{~g}}$

Or by any other correct method

As $i<1$, therefore solute gets associated.

12 (i) Zinc being low boiling will distil first leaving behind impurities/ or on electrolysis the pure metal gets deposited on cathode from anode.
(ii) Silica acts as flux to remove iron oxide which is an impurity as slag or

$$
\mathrm{FeO}+\mathrm{SiO}_{2} \rightarrow \mathrm{FeSiO}_{3}
$$

(iii) Wrought iron
13. $\mathrm{d}=\frac{\mathrm{z} \times \mathrm{M}}{\mathrm{a}^{3} \mathrm{~N}_{\mathrm{A}}}$
$z=\frac{\mathrm{da}^{3} \mathrm{~N}_{\mathrm{A}}}{\mathrm{M}}$
$\mathrm{z}=\frac{2.7 \mathrm{~g} \mathrm{~cm}^{-3} \times 6.022 \times \mathrm{mol}^{-1} \times\left(4.05 \times 10^{-8} \mathrm{~cm}\right)^{3}}{\mathrm{M}}$
$=3.999 \approx 4$

Face centered cubic cell / fcc
14. (i) 5f orbital electrons have poor shielding effect than 4 f .
(ii) due to d-d transition / or the energy of excitation of an electron from lower d-orbital to' higher d-orbital lies in the visible region /presence of unpaired electrons in the d-orbital.
(iii) $2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+}+5 \mathrm{NO}_{2}^{-} \rightarrow 2 \mathrm{Mn}^{2+}+3 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{NO}_{3}^{-}$
15. (i)

(ii) $\mathrm{t} 2 \mathrm{~g}^{3} \mathrm{eg}^{1}$
(iii) sp^{3}, diamagnetic
16. The cell reaction : $\mathrm{Fe}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

$$
\begin{aligned}
E_{\text {cell }}^{0} & =E_{c}^{0}-E_{a}^{0} \\
& =[0-(-0.44)] \mathrm{V}=0.44 \mathrm{~V}
\end{aligned}
$$

$E_{\text {cell }}=E_{\text {cell }}^{0}-\frac{0.059}{2} \frac{\log \left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{H}^{+}\right]^{2}}$
$\mathrm{E}_{\text {cell }}=0.44 \mathrm{~V}-\frac{0.059}{2} \log \frac{(0.001)}{(0.01)^{2}}$
$=0.44 \mathrm{~V}-\frac{0.059}{2} \log (10)$
$=0.44 \mathrm{~V}-0.0295 \mathrm{~V}$
$=\approx 0.410 \mathrm{~V}$
17. (i) mutual coagulation
$\begin{array}{ll}\text { (ii) strong interaction between dispersed phase and dispersion medium or } & \\ \text { solvated layer } & 1\end{array}$
(iii) CO acts as a poison for catalyst
18. (i) Hexamethylene diamine $\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$ and $1 / 2$ adipic acid $\mathrm{HOOC}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COOH} \quad 1 / 2$
(ii) 3 hydroxybutanoic acid $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COOH}$ and $1 / 2$
3 hydroxypentanoic acid $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COOH}$ $1 / 2$
(iii) Chloroprene $\mathrm{H}_{4} \mathrm{C}=\mathrm{C}(\mathrm{CI}) \mathrm{CH}=\mathrm{CH}_{2}$ $1 / 2$
IUPAC names are accepted $1 / 2$
Note: $1 / 2$ mark for name /s and $1 / 2$ mark for structure / s
19. (i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ 1
(ii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}+\mathrm{CHI}_{3}$ $1 / 2,1 / 2$
(iii) CH_{4} 1
20. (i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{NaOH} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa} \xrightarrow{\mathrm{CH}_{3} \mathrm{X}} \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$ Or
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{Na} \xrightarrow{\rightarrow} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa} \xrightarrow{\mathrm{CH}_{3} \mathrm{X}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{Na} \xrightarrow{\rightarrow} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa} \xrightarrow{\mathrm{CH}_{3} \mathrm{X}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$ 1

OR

a)

b)

(i) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}+\mathrm{H} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{H}$
(Acetyl chloride instead of acetic anhydride may be used)
21. (i) Maltose
(ii) fibrous proteins: parallel polypeptide chain, insoluble in water, Globular proteins: spherical shape, soluble in water, (or any I suitable difference)
(iii) Vitamin D

22 (i) Larger surface area, higher van der Waals' forces ,higher the boiling point
(ii) Rotation due to one enantiomer is cancelled by another enantiomer
(iii) - NO_{2} acts as Electron withdrawing group or -I effect
23. (i) Concern for students health, Application of knowledge of chemistry to daily life, empathy, caririg or any other
(ii) Through posters, nukkad natak in community, social media, play in assembly or any other
(iii) Tranquilizers are drugs used for treatment of stress or mild and severe mental disorders .. Eg: equanil (or any other suitable example)
(iv) Aspartame is unstable at cooking temperature.
24. (a) (i) Due to decrease in bond dissociation enthalpy from HF to HI , there is an increase in acidic character observed.
(ii) Oxygen exists as diatomic O_{2} molecule while sulphur as polyatomic S_{8}
(iii) Due to non availability of d orbitals
(b)

OR

(i) White Phosphorus because it is less stable due to angular strain
(ii) Nitrogen oxides emitted by supersonic jet planes are responsible for depletion of ozone layer.

Or $\quad \mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$
(iii) due to small size ofF, large inter electronic repulsion/ electron- electron repulsion among the lone pairs of fluorine
(iv) Helium
(v) $\mathrm{XeF}_{2}+\mathrm{PF}_{5} \rightarrow[\mathrm{XeF}]^{+}\left[\mathrm{PF}_{6}\right]$
25.

OR

a. i)

ii)

iii)

b. $\quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
c. By Hinsberg test secondary amines $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ shows ppt formation which is insoluble in KOH tertiary amines $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ do not react with benzene sulphonyl choride
26.

$$
\begin{aligned}
& \mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{\left[\mathrm{~A}_{0}\right]}{[\mathrm{A}]} \\
& \mathrm{k}=\frac{2.303}{30} \log \frac{0.60}{0.30} \\
& \mathrm{k}=\frac{2.303}{30} \times 0.301=0.023 \mathrm{~s}^{-1} \\
& \mathrm{k}=\frac{2.303}{60} \log \frac{0.60}{0.15} \\
& \mathrm{k}=\frac{2.303}{60} \times 0.6021=0.023 \mathrm{~s}^{-1}
\end{aligned}
$$

OR

a) (i) Rate will increase 4 times of the actual. rate of reaction.
(ii) Second order. reaction
b) $\quad t_{1 / 2}=\frac{0.693}{\mathrm{k}}$

$$
30 \min =\frac{0.693}{\mathrm{k}}
$$

$$
\mathrm{k}=0: 0231 \mathrm{~min}^{-1} \quad 1 / 2
$$

$$
\begin{aligned}
& \mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{\left[\mathrm{~A}_{0}\right]}{[\mathrm{A}]} \\
& \mathrm{t}=\frac{2.303}{0.0231} \log \frac{100}{10} \\
& \mathrm{t}=\frac{2.303}{0.0231} \mathrm{~min} \\
& \mathrm{t}=99.7 \mathrm{~min}
\end{aligned}
$$

