CBSE Class 12 Chemistry Question Paper Solution 2015

QUESTION PAPER CODE 56/1/1

EXPECTED ANSWERS/VALUE POINTS

1.	3	1
2.	2, 5 - dinitrophenol	1
3.	CH ₃ -CH ₂ -Br	
	Because it is a primary halide / (1°) halide	1/2+1/2
4.	BaCl ₂ because it has greater charge / +2 charge	1/2+1/2
5.	X_2Y_3	1
6.	Elements which have partially filled d-orbital in its ground states or any one of its oxidation states.	1
	1) Variable oxidation states.	1/2+1/2
	2) Form coloured ion	
	Or any other two correct charactenstics	

 $[Co(NH_3)_5(ONO)]^{2+}$ 2) 8. 1 (i) LiAIH₄ / NaBH₄ /H₂, Pt (ii) KMnO₄, KOH 1 9. When vapour pressure of solution is higher than that predicted by Raoult's law / 1 the intermolecular attractive forces between the solute-solvent/(A-B) molecules are weaker than those between the solute-solute and solvent-solvent molecules/ $\frac{1}{2}$ A-A or B-B molecules. Eg. ethanol-acetone/cthanol-cyclohexane/ CS_2 -acetone or any other correct $\frac{1}{2}$ example Δ_{mix} H is positive OR Azeotropes are binary mixtures having the same composition in the liquid and (a) vapour phase and boil at a constant temperature. 1 (b) Minimum boiling azeotrope $\frac{1}{2}$ $\frac{1}{2}$ eg - ethanol + water or any other example $Ag^{+}(aq) + e \rightarrow Ag(s)$ 10. $\frac{1}{2}$ (i) Reaction with higher E°value / Δ G°negative $\frac{1}{2}$ (ii) Molar conductivity of a solution at infinite dilution or when concentration approaches zero $\frac{1}{2}$ $\frac{1}{2}$ Number of ions per unit volume decreases

Diamminedichloridoethylenediaminechromium(III) chloride

1+1

 $\frac{1}{2}$

7.

1)

 $\Delta T_f = i K_f m$

 $\Delta T_f = i K_f \frac{w_b \times 1000}{M_b \times w_a}$

11.

1.62 K = i × 4.9K kg mol⁻¹ ×
$$\frac{3.9 \text{ g}}{122 \text{ gmol}^{-1}} \times \frac{1000}{49 \text{ g}}$$

$$i = 0.506$$

Or by any other correct method

As i<1, therefore solute gets **associated**.

- 12 (i) Zinc being low boiling will distil first leaving behind impurities/ or on electrolysis the pure metal gets deposited on cathode from anode.
 - (ii) Silica acts as flux to remove iron oxide which is an impurity as slag or $FeO + SiO_2 \rightarrow FeSiO_3$

1

(iii) Wrought iron

13.
$$d = \frac{z \times M}{a^3 N_A}$$

$$z = \frac{d a^3 N_A}{M}$$

$$z = \frac{2.7 \text{ g cm}^{-3} \times 6.022 \times \text{mol}^{-1} \times (4.05 \times 10^{-8} \text{ cm})^{3}}{M}$$

$$= 3.999 \approx 4$$

Face centered cubic cell / fcc

- 14. (i) 5f orbital electrons have poor shielding effect than 4f.
 - (ii) due to d-d transition / or the energy of excitation of an electron from lower d-orbital to' higher d-orbital lies in the visible region /presence of unpaired electrons in the d-orbital.

(iii)
$$2 \text{ MnO}_4^- + 6 \text{ H}^+ + 5 \text{ NO}_2^- \rightarrow 2 \text{ Mn}^{2+} + 3 \text{ H}_2\text{O} + 5 \text{ NO}_3^-$$

15. (i)

(ii) $t2g^3 e g^1$

1

1

1/2+1/2

16. The cell reaction: $Fe(s) + 2H^+(aq) \rightarrow Fe^{2+}(aq) + H_2(g)$

$$E_{cell}^{o} = E_{c}^{o} - E_{a}^{o}$$

$$= [0-(-0.44)] V = 0.44V$$

$$E_{cell} = E_{cell}^{o} - \underline{0.059} \log \underline{[Fe^{2+}]}$$

$$2 \underline{[H^{+}]^{2}}$$

1

$$E_{cell} = 0.44 \text{ V} - \frac{0.059}{2} \log \frac{(0.001)}{(0.01)^2}$$

1

$$= 0.44 \text{ V} - \frac{0.059}{2} \log (10)$$

$$= 0.44 \text{ V} - 0.0295 \text{ V}$$

$$= \approx 0.410 \text{ V}$$

1

17. (i) mutual coagulation

1

(ii) strong interaction between dispersed phase and dispersion medium or solvated layer

1

(iii) CO acts as a poison for catalyst

1

18. (i) Hexamethylene diamine $NH_2(CH_2)_6 NH_2$ and

1/2

adipic acid HOOC - (CH₂)₄ - COOH

 $\frac{1}{2}$

(ii) 3 hydroxybutanoic acid CH₃CH(OH)CH₂COOH and

 $\frac{1}{2}$

(Acetyl chloride instead of acetic anhydride may be used)

21.	(1)	Maitose]
	(ii)	fibrous proteins: parallel polypeptide chain, insoluble in water, Globular proteins:	
		spherical shape, soluble in water, (or any I suitable difference)	1
	(iii)	Vitamin D	1
22	(i)	Larger surface area, higher van der Waals' forces ,higher the boiling point	1
	(ii)	Rotation due to one enantiomer is cancelled by another enantiomer	1
	(iii)	- NO_2 acts as Electron with drawing group or $-I$ effect	1
23.	(i)	Concern for students health, Application of knowledge of chemistry to daily	
		life, empathy, caririg or any other	$\frac{1}{2}, \frac{1}{2}$
	(ii)	Through posters, nukkad natak in community, social media, play in assembly or any other	9
	(;;;)		
	(iii)	Tranquilizers are drugs used for treatment of stress or mild and severe mental disorders Eg: equanil (or any other suitable example)	1/2, 1/2
			/2, /:
	(iv)	Aspartame is unstable at cooking temperature.	1
24.	(a)	(i) Due to decrease in bond dissociation enthalpy from HF to HI, there is	
		an increase in acidic character observed.	1
		(ii) Oxygen exists as diatomic O_2 molecule while sulphur as polyatomic S_8	1
		(iii) Due to non availability of d orbitals	1
	(b)	Cl	,
			J

OR

(i) White Phosphorus because it is less stable due to angular strain $\frac{1}{2} + \frac{1}{2}$

1

1

1

(ii) Nitrogen oxides emitted by supersonic jet planes are responsible for depletion of ozone layer.

Or
$$NO+O_3 \rightarrow NO_2 + O_2$$

- (iii) due to small size of F, large inter electronic repulsion/electron-electron repulsion among the lone pairs of fluorine
- (iv) Helium
- (v) $XeF_2 + PF_5 \rightarrow [XeF]^+ [PF_6]^-$

OR

- b. $(CH_3)_3N < C_2H_5NH_2 < C_2H_5OH$ 1
- c. By Hinsberg test secondary amines (CH₃)₂NH shows ppt formation which is insoluble in KOH tertiary amines (CH₃)₃N do not react with benzene sulphonyl choride

$$k = \underbrace{2.303}_{t} \log \underbrace{[A_0]}_{[A]}$$

1

$$k = \underbrace{2.303}_{30} \log \underbrace{0.60}_{0.30}$$

$$k = 2.303 \quad x \quad 0.301 = 0.023 \text{ s}^{-1}$$

 $\frac{1}{2}$

$$k = \underline{2.303} \log \underline{0.60} \\ 60 \qquad 0.15$$

 $\frac{1}{2}$

$$k = 2.303 \times 0.6021 = 0.023 \text{ s}^{-1}$$

1

As k is constant in both the readings, hence it is a pseudo first order reaction.

 $\frac{1}{2}$

ii) Rate
$$= -\Delta[R]/\Delta t$$

 $\frac{1}{2}$

$$=\frac{-[0.15-0.30]}{60-30}$$

1

$$= 0.005 \text{ mol } L^{-1} \text{ s}^{-1}$$

OR

Rate will increase 4 times of the actual. rate of reaction. a) (i)

1 + 1

Second order. reaction (ii)

b)

$$t_{1/2} = \frac{0.693}{k}$$

 $\frac{1}{2}$

$$k = 0.0231 \text{min}^{-1}$$

 $30 \min = \frac{0.693}{k}$

 $\frac{1}{2}$

$k = \underbrace{2.303}_{t} \log \left[\underbrace{A_0}_{A} \right]$	
$t = \frac{2.303}{0.0231} \log \frac{100}{10}$	
$t = \frac{2.303}{0.0231} \min$	
t = 99.7 min	