CBSE Class 12 Chemistry Question Paper Solution 2016

CHEMISTRY (043) MARKING SCHEME 2016 SET-56/1/C

Q	VALUES POINTS	MARKS
1	CH ₃	1
	H ₃ C-C-CH ₃	
	Br	
2	NO2	1
3	(i) Molecular Solid - I ₂ (ii) Ionic Solid - NaCl (Any other suitable example)	1/2 + 1/2
4	2- Phenylethanol	1
5	Like charged particles cause repulsion / Brownian movement / solvation	1
6		1/2 + 1/2
	(i) Gas B, Higher the value of K_H lower is the solubility of gas / $p = K_H x$	
	(ii) Negative deviation from Raoult's law	1
7		1+1
	OR	
7	(i) $2Fe^{3+} + SO_2 + 2H_2O$ $2Fe^{2+} + SO_4^{2-} + 4H^+$ (ii) $XeF_4 + SbF_5$ $[XeF_3]^+ [SbF_6]^-$	1
8	(i) [Co (NH ₃) ₆] Cl ₃ (ii) Hexaamminecobalt(III) chloride	1
9	(i) Zero order reaction, Molecularity is 2 / bimolecular reaction (ii) mol L ⁻¹ s ⁻¹	1/2 +1/2
		1

10	(i)	1
	0	
	$Ar/R - C - NH_2 + Br_2 + 4NaOH \longrightarrow Ar/R - NH_2 + Na_2CO_3 + 2NaBr + H_2O$ (ii)	
	(11)	
	$Ar/R - NH_2 + CHCl_3 + 3KOH \xrightarrow{\Delta} Ar/R - NC + 3KCl + 3H_2O$	1
44	(where R=alkyl group , Ar=aryl group) z= 2	1/
11	$d = \underline{z} \times \underline{M}$	1/2
	$a^3 \times N_o$ $N = z \times M/d \times a^3$	1
	$N= 2 \times 300 \text{ g} / [7.5 \text{ g cm}^{-3} (5 \times 10^{-8} \text{ cm})^3]$ $N= 6.4 \times 10^{23} \text{ atoms}$	1
	$ \begin{array}{l} OR \\ d = \underline{z \times M} \end{array} $	
	$a^3 \times N_o$	1/2
	$7.5 = 2 \times M$	
	$(500)^3 \times 10^{-30} \times 6.022 \times 10^{23}$	1
	$M = 7.5 \times 125 \times 10^{-24} \times 6.022 \times 10^{23}$	
	2	
	= 282.3g/mol	1/2
	$282.3 \mathrm{g} = 6.022 \times 10^{23} \mathrm{atoms}$	
	$300 \mathrm{g} = \frac{6.022 \times 10^{23} \times 300}{282.3}$	
	$= 6.4 \times 10^{23} \text{ atoms}$	1
12	Given: Initial pressure, $P_0 = 0.30$ atm	
	$P_t = 0.50 \text{ atm}$ $t = 300 \text{ s}$	
	Rate constant, $k = \frac{2.303}{t} \log \frac{P_0}{2P_0 - P_t}$	1
	$= \frac{2.303}{300 \ s} \log \frac{0.30}{2 \times 0.30 - 0.50}$	
	$=\frac{2.303}{300 \ s} \log \frac{0.30}{0.60-0.50}$	1
	$=\frac{2.303}{300 \ s} \log \frac{0.30}{0.10}$	
	$=\frac{2.303}{300 \ s} \log 3$	

	$=\frac{2.303}{300 \text{ s}} \times 0.4771$	
	1.099	
	= 300 s	4
	=0.0036 s ⁻¹ $/3.66 \times 10^{-3}$ s ⁻¹ (deduct ½ mark if unit is not written)	1
13	i) Liquid loving/ solvent loving.	1
	ii) Potential difference between the fixed layer and diffused / double layer of opposite	
	charges	1
	iii) Some substances at higher concentration exhibit colloidal behaviour due to formation	
	of aggregates. The aggregated particles thus formed are called associated colloids or	
	micelles	1
14		
14	(i) Mond's Process	1
	(ii) The melting point of alumina is very high. It is dissolved in cryolite which lowers the	•
	melting point and brings conductivity / acts as a solvent.	1
	(iii) Limestone is decomposed to CaO ,which removes silica impurity of the ore as slag.	
	OR \triangle	
	$CaCO_3 \longrightarrow CaO + CO_2$	1
	$C \text{ aO} + SiO_2 \longrightarrow CaSiO_3$	
15	Slag	1/2
13	$\Delta T_b = i K_b.m$	/2
	$i=2$ $: \forall V \vee w_2 \times 1000$	
	$= i \times K_b \times \frac{w_2 \times 1000}{M \times W_1}$	1
	$= 2 \times 0.52 \text{K kg mol}^{-1} \times \frac{4 \text{ g} \times 1000 \text{ g/kg}}{120 \text{ g/mol} \times 100 \text{ g}}$	·
	$=\frac{2\times0.52}{3}$	
	= 0.346 K	1/2
	Boiling point of water = 373.15 K / 373 K $T_b = T_b^o + \Delta T_b$	
	= 373.15 K + 0.346 K / $373 K + 0.346 K$	
	= 373.496 K / 373.346 K	1
16	i) Because stability of higher oxidation state decreases as we move down the group / S is	1
	more stable in higher (+6) oxidation state whereas Te is more stable in +4 oxidation state.	
	(ii) Due to absence of d orbital.	1

	(iii)Because I – Cl bond is weaker than I-I bond.	1
17		
	CH ₃ OH +CH ₃ -C-I	1
	CH ₃	
	СН ₃ СН ₂ — С — СН ₃	1
	(c) ОН СНО	1
18	(i) Aniline is a Lewis base while AlCl₃ is lewis acid. They combine to form a salt.	1
	(ii) Due to combined + I and solvation effects.	1
	(iii) Due to presence of H-bonding in primary amines.	1
19	(i) $2 \longrightarrow C1 \qquad \text{dry} \\ + 2\text{Na} \xrightarrow{\text{Ether}} \longrightarrow \longrightarrow + 2\text{Na}C1$	1
	(ii) CH ₃ CH=CH ₂ HBr / peroxide CH ₃ CH ₂ CH ₂ Br Nal/acetone CH ₃ CH ₂ CH ₂ I	1
	(iii) CH ₃ CH ₂ CHCH ₃ Alc.KOH CH ₃ CH=CHCH ₃ Br	1

	OR	
19	(i) $ \begin{array}{c} B_{\Gamma} \\ CH - CH_{3} \end{array} $ (ii) $ \begin{array}{c} CH_{3} CH_{3} \\ CH_{3} - CH - CH - CH_{3} \end{array} $	1
	(iii) CH₃CH₂NC	1
20	(i) On vulcanization, sulphur forms cross links at the reactive sites of double bond, the rubber gets stiffened.	1
	(ii) Ethylene glycol / HO – CH ₂ CH ₂ – OH, Terephthalic acid / _{ноос} — соон	1
	(iii) Neoprene < Polythene < Terylene	1
21	(i) Starch - Polymer of α –D- glucose units / Polymer of α - glucose units.	1
	Cellulose – polymer of β-D -glucose units / polymer of β -glucose units. (ii) Phosphodiester linkage (iii) Fibrous protein – Keratin / myosin / collagen	1
	Globular protein - haemoglobin / insulin	1/2 +1/2
22	(i) sp³d², paramagnetic, high spin (ii) CI en Pt en CI en	1+1/2+1/2
23	(i) Caring nature, supportive, aware (or any other two suitable values)	1/2 + 1/2

	(ii) Antacids are the medicines used to control acidity in stomach. Ex – mixture of aluminium	1+ 1/2
	and magnesium hydroxide / sodium hydrogen carbonate / Zantac / Ranitidine	
	(or any other suitable example)	
	(iii) No, Excessive antacid can make the stomach alkaline and trigger the production of more	1/2 + 1
24	acid.	
24	a) $E_{\text{cell}} = E_{\text{cell}}^0 - \frac{0.0591 V}{n} \log \frac{[Al^3]^2}{[Cu^2]^3}$	1
	$E_{\text{cell}}^{0} = E_{\text{cell}} + \frac{0.0591 v}{n} \log \frac{[Al^{3}]^{2}}{[Cu^{2}]^{3}}$	
	$E_{\text{cell}}^0 = 1.98 \text{ V} + \frac{0.0591 \text{ V}}{6} \log \frac{(0.01)^2}{(0.01)^3}$	1
	$E_{\text{cell}}^0 = 1.98 \text{ V} + \frac{0.0591 \text{ V}}{6} \log 10^2$	
	$E_{\text{cell}}^0 = 1.98 \text{ V} + \frac{0.0591 \text{ V}}{6} \times 2 \times \log 10$ [:\log 10 = 1]	
	$E_{\text{cell}}^0 = 1.98 \text{ V} + \frac{0.0591 v}{6} \times 2$	
	$E_{cell}^0 = 1.98 \text{ V} + 0.0197 \text{ V}$	
	$E_{cell}^{0} = 1.9997 \text{ V}$	1
	(b) A , because its E^0 value is more negative.	1+1
	OR	
24		
	(a) $\Lambda_{\rm m}^{\rm c} = \kappa x 1000/{\rm C}$	
	$= 3.905 \times 10^{-5} \times 1000 / 0.001$	1/2
	= 39.05 S cm ² /mol	1
	$CH_3 COOH \rightarrow CH_3COO^- + H^+$	
	Λ° CH ₃ COOH = $λ$ ° CH ₃ COO- + $λ$ ° H+	
	= 40.9 + 349.6	
	Λ° CH ₃ COOH = 390.5 S cm ² /mol	

	$lpha = rac{arLambda_{ m m}}{arLambda_{ m m}^0}$	1/2
	= 39.05/ 390.5	
	= 0.1	1
	(b) Device used for the production of electricity from energy released during spontaneous	1
	chemical reaction and the use of electrical energy to bring about a chemical change.	
	The reaction gets reversed / It starts acting as an electrolytic cell & vice – versa.	1
25	(a)	
	i) Ability of oxygen to form multiple bond with Mn metal.	1
	ii) Cr ²⁺ is oxidized to Cr ³⁺ which has stable d ³ / t ³ _{2g} orbital configuration	1
	iii) Cu ²⁺ has unpaired electron while Zn ²⁺ has no unpaired electron.	1
	(b)	
	i) $2MnO_2 + 4KOH + O_2$ \triangle $2K_2MnO_4 + 2H_2O$	
	ii) $Cr_2O_7^{2-} + 14 H^+ + 6 I^ \longrightarrow$ $2Cr^{3+} + 7H_2O + 3 I_2$	1
	(balanced equation is required)	1
	OR	
05		1/ . 4
25	i) Mn. It has maximum unpaired electrons.	1/2 +1
	ii) Cr	1
	iii) Sc iv) Manganese. Mn³+ to Mn²+ results in the stable half filled (d⁵) configuration.	1/2 +1
	iv) Manganese. Mine to Mine results in the stable hall filled (de) configuration.	/2 T I
26	(a)	
	(i) A: CH₃CHO , B: CH₃CH=N-OH	1/2 + 1/2
	(ii) A: CH₃COOH , B: CH₃COCI	1/2 + 1/2
	(6)	
	(b)	
	(i) Heat both compounds with NaOH and I ₂ , C ₆ H ₅ COCH ₃ forms yellow ppt of CHI ₃ whereas C ₆ H ₅ CHO does not.	1
	(i) Heat both compounds with NaOH and I ₂ , C ₆ H ₅ COCH ₃ forms yellow ppt of CHI ₃	1

	OR	
26	(a)	
	$C \longrightarrow C \xrightarrow{NH_2NH_2} C \longrightarrow NNH_2 \xrightarrow{KOH/ethylene glycol} CH_2 + N_2$	1
	(b) C ₆ H ₅ COCH ₃ < CH ₃ COCH ₃ < CH ₃ CHO	1
	(c) Because of resonance in carboxylic group the carbonyl group loses a double bond character.	1
	(d) CH ₃ CH ₂ CH=CH-CH ₂ CHO	1
	(e) A: CH ₃ CH ₂ CHO	1/2 + 1/2
	$B: CH_3COCH_3$	/2 + /2
	A Dilling App	