CHEMISTRY MARKING SCHEME 2016 SET - 56/1/E

Ques.	Value points		Marks	
1	(ii)		1	
2	Like Charged particles cause repulsion/ Brownian motion/ solvation		1	
3	SO_{2}		1	
4	Conductor / Metallic solid.		1	
5	N-Phenylethanamide / Acetanilide		1	
6			1+1	
	Positive deviation	Negative deviation		
	Observed vapour pressure is greater than expected vapour pressure.	Observed vapour pressure is less than expected vapour pressure.		
	A-B interaction < A - A \& B-B	$\mathrm{A}-\mathrm{B}$ interaction $>\mathrm{A}-\mathrm{A} \& \mathrm{~B}-\mathrm{B}$ (Any other correct differences)		
7	(i) (ii)		1	
8	$\mathrm{X}: \mathrm{CH}_{3}-\mathrm{CO}_{-} \mathrm{CH}_{2}-\mathrm{CH}_{3}$ / Butan-2-one $\mathrm{Y}: \mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}-\mathrm{CH}_{3} /$ Butan-2-ol		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
9	(i) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{4}$ (ii) Hexaammineplatinum (IV) chloride		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
10	$\begin{align*} & t=\frac{2.303}{k} \log \frac{\left[A_{0}\right]}{[A]} \\ & t_{3 / 4}=\frac{2.303}{k} \log \frac{\left[A_{0}\right]}{1 / 4\left[A_{0}\right]} \\ & t_{3 / 4}=\frac{2.303}{k} \log 4 \tag{i} \end{align*}$		1/2	

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{gather*}
t_{1 / 2}=\frac{2.303}{k} \log \frac{\left[A_{0}\right]}{1 / 2\left[A_{0}\right]} \\
t_{1 / 2}=\frac{2.303}{k} \log 2 \tag{ii}
\end{gather*}
\] \\
Divide equation (i) by (ii)
\[
\begin{aligned}
\& t_{3 / 4}=\frac{2.303}{k} \log 4 \\
\& t_{1 / 2}=\frac{2.303}{k} \log 2 \\
\& t_{3 / 4}=2 t_{1 / 2}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)

1 \\
\hline \& OR \& \\

\hline 10 \& | For zero order reaction $\mathrm{R} \longrightarrow \mathrm{P}$ $\text { Rate }=-\frac{\mathrm{d}[\mathrm{R}]}{\mathrm{dt}}=\mathrm{k}[\mathrm{R}]^{0}$ $\mathrm{d}[\mathrm{R}]=-\mathrm{kdt}$ |
| :--- |
| Integrating both sides $\begin{equation*} [\mathrm{R}]=-\mathrm{kt}+\mathrm{I} \tag{i} \end{equation*}$ |
| At $t=0 \quad R=[R]_{0}$ |
| Substituting in equation (i) $\begin{align*} & {[\mathrm{R}]_{0}=-\mathrm{k} \times 0+\mathrm{I}} \\ & {[\mathrm{R}]_{0}=\mathrm{I}} \tag{ii} \end{align*}$ |
| Substituting the value of I in equation (i) $\begin{aligned} & \mathrm{R}=-\mathrm{kt}+[\mathrm{R}]_{0} \\ & \mathrm{k}=\frac{[\mathrm{R}]_{0}-[\mathrm{R}]}{\mathrm{t}} \end{aligned}$ | \& $1 / 2$

$1 / 2$

$1 / 2$
$1 / 2$ \\

\hline 11 \& | In $\mathrm{bcc}, \mathrm{z}=2$ $\begin{equation*} \mathrm{d}=\frac{\mathrm{Z} \times \mathrm{M}}{\mathrm{a}^{3} \times \mathrm{N}_{0}} \tag{i} \end{equation*}$ |
| :--- |
| No of atoms $=\frac{\mathrm{W}}{\mathrm{M}} \times \mathrm{N}_{0}$ $2.5 \times 10^{24}=\frac{250}{\mathrm{M}} \times \mathrm{N}_{0}$ $\begin{equation*} \mathrm{M}=\frac{250 \times \mathrm{N}_{0}}{2.5 \times 10^{24}} \tag{ii} \end{equation*}$ |
| Putting the value of M in equation (i) $\begin{aligned} & \mathrm{d}=\frac{2 \times 250 \mathrm{~g} \times \mathrm{N}_{0}}{2.5 \times 10^{24} \text { atoms } \times\left(400 \times 10^{-10} \mathrm{~cm}\right)^{3}} \times \frac{1}{\mathrm{~N}_{0}} \\ & \mathrm{~d}=3.125 \mathrm{~g} / \mathrm{cm}^{3} \end{aligned}$ |
| (or any other correct method) | \& $1 / 2$

1

$1 / 2$
1 \\
\hline 12 \& i. Due to strong electron withdrawing effect of carbonyl group and \& 1 \\
\hline
\end{tabular}

	resonance stabilization of the conjugate base. ii. Oxidation of aldehydes involves cleavage of C-H bond whereas oxidation of ketones involve cleavage of $\mathrm{C}-\mathrm{C}$ bond which is stronger than C-H bond. iii.Due to greater resonance stabilization / Because of greater electronegativity of sp^{2} hybridised carbon to which carboxyl carbon is attached.	1 1
13	$\begin{aligned} & \mathrm{K}=\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{P}_{0}}{2 \mathrm{P}_{0}-\mathrm{Pt}} \\ & =\frac{2.303}{300} \log \frac{0.30}{2 \times 0.30-0.50} \\ & =0.0036 \mathrm{~s}^{-1} / 3.6 \times 10^{-3} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
14	(i) The process of converting freshly prepared precipitate into colloidal solution by shaking it with dispersion medium in the presence of a small amount of electrolyte. (ii) The Potential difference between the fixed layer and the diffused/double layer of opposite charges. (iii) Zig-zag movement / random motion.	1 1 1
15	i. The metal is converted into its volatile compound and finally decomposed to give pure metal . ii. The different components of a mixture are differently adsorbed on an adsorbent. iii. Mineral particles are wetted by oil and gangue particles by water.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
16	$\begin{aligned} & \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{k}_{\mathrm{f}} \times \mathrm{m} \\ & \boldsymbol{\Delta \mathbf { T } _ { \mathbf { F } }}=\mathbf{i} \times \mathbf{k}_{\mathbf{F}} \times \frac{\mathrm{w}_{\mathrm{B}}}{\mathbf{M}_{\mathbf{E}}} \times \frac{\mathbf{1 0 0 0}}{\mathrm{w}_{\mathbf{A}}} \\ & \Delta T_{f}=3 \times 1.86 \times \frac{3}{111} \times \frac{1000}{100} \\ & \Delta \mathrm{~T}_{\mathrm{f}}=1.50 \mathrm{k} \\ & \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{T}^{0}{ }_{\mathrm{f}}-\mathrm{T}_{\mathrm{f}} \\ & \mathrm{~T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{f}}^{0}-\Delta \mathrm{T}_{\mathrm{f}} \\ & =273-1.5 \quad / 273.15-1.50 \\ & =271.5 \mathrm{~K} / 271.65 \mathrm{~K} \end{aligned}$	$1 / 2$ $1 / 2$ 1 $1 / 2$ $1 / 2$
17	i. Due to greater angular strain of white phosphorus whereas red phosphorus has polymeric structure. ii. Due to stronger S-S single bond than O-O single bond. iii. Due to absence of d-orbital in Fluorine .	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
18		$1 / 2 \times 3$

\begin{tabular}{|c|c|c|}
\hline \& (ii) (A) : \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\), (B): \(\mathrm{C}_{6} \mathbf{H}_{5} \mathbf{N}_{\mathbf{2}}^{+} \mathbf{C l}^{-} \quad\), (C): \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}\) \& \(1 / 2 \times 3\) \\
\hline 19 \& \begin{tabular}{l}
i. 1, 3 butadiene \\
styrene
\[
\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}+
\]
 \\
ii. Ethylene glycol + Terephthalic acid
\[
\mathrm{HOCH}_{2}-\mathrm{CH}_{2} \mathrm{OH}+
\]
 \\
iii. Caprolactum \\
(Note : Half marks for structure(s) and half mark for name(s))
\end{tabular} \& 1

1
1 \\

\hline 20 \& | (i) $\quad \beta \mathrm{D}$-galactose and β D-glucose/ galactose and glucose. |
| :--- |
| (ii) Hydrogen bond. |
| (iii) Nucleotide=Base+Sugar + Phosphate group |
| Nucleoside=Base+Sugar | \& \[

$$
\begin{gathered}
1 \\
1 \\
1 / 2 \\
1 / 2
\end{gathered}
$$
\] \\

\hline 21 \& | a. $\quad \mathrm{sp}^{3} \mathrm{~d}^{2}$ |
| :--- |
| Paramagnetic |
| High spin |
| b. As (en) is bidentate chelating ligand \& F^{-}is a monodentate ligand. | \& \[

$$
\begin{gathered}
1 \\
1 / 2 \\
1 / 2 \\
\\
1
\end{gathered}
$$
\] \\

\hline 22 \& | i. |
| :--- |
| ii. |
| iii. $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\mathrm{Red} \mathrm{P} / \mathrm{I}_{2}} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$ |
| (or any other correct method) | \& 1

1
1
1 \\
\hline \& OR \& \\
\hline
\end{tabular}

22	i. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Cl}+\mathrm{alc} . \mathrm{KOH} \longrightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2} / \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}^{2}-\mathrm{CH}_{3}$ ii. iii.	1 1 1
23	$\left.\begin{array}{ll}\text { (i) } & \text { Caring nature, supportive, aware (any other two suitable values) } \\ \text { (ii) } & \text { Antacids are the medicines used to control acidity in stomach. } \\ \text { Ex-mixture of aluminium and magnesium hydroxide / sodium } \\ \text { hydrogen carbonate / Zantac / Ranitidine }\end{array}\right\}$(any other suitable example)\quadNo, Excessive antacid can make the stomach alkaline and (iii) \quadtrigger the production of more acids.	$\begin{gathered} 1 / 2+1 / 2 \\ 1+1 / 2 \end{gathered}$ $1 / 2+1$
24	a. $\Delta G^{0}=-n$ F E ${ }^{0}$ cell $\begin{aligned} & \Delta G^{0}=-6 \times 96500 \times 2.02 \\ & \Delta G^{0}=-1169580 \mathrm{~J} / \mathrm{mol} \\ & \mathbf{E}_{\mathbf{m a}}^{\mathbf{0}}=\frac{\mathbf{0 . 0 5 9 V}}{\mathbf{n}} \mathbf{l o g} \mathrm{K}_{\mathrm{c}} \\ & \boldsymbol{l o g}^{K_{c}}=\frac{\mathbf{2 . 0 2 V} \mathbf{V} \mathbf{6}}{\mathbf{0 . 0 5 9 V}} \\ & =205.42 \end{aligned}$ b. $\quad \mathrm{A}$, because its E^{0} value is more negative.	$1 / 2$ 1 1 $1 / 2$ 1 $1+1$
	OR	
24	(a) a.	$1 / 2$ 1 $1 / 2$ 1

	b. Primary cell $\mathrm{Zn}+2 \mathrm{NH}_{4}^{+}+2 \mathrm{MnO}_{2} \rightarrow \mathrm{Zn}^{++}+2 \mathrm{NH}_{3}+2 \mathrm{MnO}(\mathrm{OH})$	1+1
25	a. (i) Due to higher oxidation state of Mn in $\mathrm{Mn}_{2} \mathrm{O}_{7}$. (ii) Due to Lanthanoid contraction. (iii) Due to availability of vacant d-orbitals. b. $2 \mathrm{MnO}_{2}+4 \mathrm{KOH}+\mathrm{O}_{2} \rightarrow 2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ KMnO_{4} diamagnetic $\mathrm{K}_{2} \mathrm{MnO}_{4}$ paramagnetic.	$\begin{gathered} 1 \\ 1 \\ 1 \\ \\ 1 \\ 1 / 2 \\ 1 / 2 \end{gathered}$
	OR	
25	a. (i) High ionization enthalpy/Low hydration enthalpy. (ii) $\mathrm{Cr}, \mathrm{Cr}^{2+}$ is oxidized to Cr^{3+} which has stable $\mathrm{d}^{3} / \mathrm{t}^{3}{ }_{2 \mathrm{~g}}$ orbital configuration. (iii) Due to d^{10} configuration/no unpaired electrons. b. (i) $4 \mathrm{FeCr}_{2} \mathrm{O}_{4}+8 \mathrm{Na}_{2} \mathrm{CO}_{3}+7 \mathrm{O}_{2} \rightarrow 8 \mathrm{Na}_{2} \mathrm{CrO}_{4}+2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{CO}_{2}$ (ii) $2 \mathrm{Na}_{2} \mathrm{CrO}_{4}+2 \mathrm{H}^{+} \rightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 1 \\ 1 / 2+1 / 2 \end{gathered}$ 1 1 1
26	a. (i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{I}$ (ii) (iii) b. (i) (ii)	1 1 1 1 1 1 1

\begin{tabular}{|c|c|c|}
\hline \& OR \& \\
\hline 26 \& \begin{tabular}{l}
a. (i) \\
(ii) \\
(iii) \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{NaOCH}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}_{3}+\mathrm{NaCl}\) \\
b. (i) Heat both compounds with NaOH and \(\mathrm{I}_{2}\), Ethanol gives yellow ppt of iodoform. Phenol does not. \\
(ii) Heat both compounds with NaOH and \(\mathrm{I}_{2}\), Propan-2ol gives yellow ppt of iodoform. 2-Methylpropan-2-ol does not. (any other suitable test)
\end{tabular} \& 1

1
1
1
1
1 \\
\hline
\end{tabular}

