CBSE Class 12 Chemistry Question Paper Solution 2016

CHEMISTRY MARKING SCHEME 2016 SET - 56/1/E

Ques.	Value	points	Marks
1	(ii)		1
2	Like Charged particles cause repulsion/	Brownian motion/ solvation	1
3	SO ₂		1
4	Conductor / Metallic solid.		1
5	N-Phenylethanamide / Acetanilide	е	1
6	-		1+1
	Positive deviation	Negative deviation	
	Observed vapour pressure is	Observed vapour pressure is less	
	greater than expected vapour	than expected vapour pressure.	
	pressure.		
	A-B interaction $<$ A $-$ A & B $-$ B	A - B interaction $> A - A & B - B$	
		(Any other correct differences)	
7	(i)	20 11 11	1
	0 0		
	√1 \ 0-0 \ 1 \ 0		
	OH OH		
	(ii)		
	F (")		
	- · · · · ·		
	F\\\		
	Xe		
	\(\lambda\)e		1
	F _		1
	<u> </u> `F		
	F		
8	X: CH ₃ -CO-CH ₂ -CH ₃ / Butan-2-one		1
	Y: CH ₃ -CH(OH)-CH ₂ -CH ₃ / Butan-2-ol		1
9	$_{(i)}$ [Pt(NH ₃) ₆]Cl ₄		1
	(ii) Hexaammineplatinum (IV) cl	hloride	1
10	$t = 2.303 \log [A_0]$		
	k [A]		
	$t_{3/4} = 2.303 \log [A_0]$		
	k 1/4[A ₀]		
	$t_{3/4} = 2.303 \log 4$	(i)	
	k		1/2
<u> </u>			

	$t_{1/2} = \underbrace{2.303}_{k} \log \left[\underbrace{A_0}_{0} \right]$ $t_{1/2} = \underbrace{2.303}_{k} \log 2 \qquad(ii)$ $t_{3/4} = \underbrace{2.303}_{2} \log 4$	1/2
	k	
	$t_{1/2} = 2.303 \log 2$	
	$t_{3/4} = 2 t_{1/2}$	1
	OR	
10	For zero order reaction	
	$R \longrightarrow P$ $Rate = -\frac{d[R]}{dt} = k[R]^{0}$	1/2
	d[R] = -kdt	
	Integrating both sides $[R] = -kt + I \qquad (i)$ At $t = 0$ $R = [R]_0$	1/2
	Substituting in equation (i)	
	$[R]_0 = -k \times 0 + I$ $[R]_0 = I \qquad (ii)$ Substituting the value of I in equation (i)	1/2
	$R = -kt + [R]_0$	
	$k = \frac{[R]_0 - [R]}{t}$	1/2
11	In bcc, $z = 2$	
11	$d = \frac{Z \times M}{a^3 \times N_0} \qquad \dots (i)$ No of atoms = $\frac{W}{M} \times N_0$	1/2
	$2.5 \times 10^{24} = \frac{250}{M} \times N_0$	
	$M = \frac{250 \times N_0}{2.5 \times 10^{24}}$ (ii)	1
	Putting the value of M in equation (i)	1
	$d = \frac{2 \times 250g \times N_0}{2.5 \times 10^{24} \text{atoms} \times (400 \times 10^{-10} \text{cm})^3} \times \frac{1}{N_0}$	
	$d = 3.125 \text{ g/cm}^3$	1/2
	(or any other correct method)	
		1
12	i. Due to strong electron withdrawing effect of carbonyl group and	1

	resonance stabilization of the conjugate base. ii. Oxidation of aldehydes involves cleavage of C-H bond whereas oxidation of ketones involve cleavage of C-C bond which is	1
	stronger than C-H bond. iii.Due to greater resonance stabilization / Because of greater electronegativity of sp² hybridised carbon to which carboxyl carbon is attached.	1
	2.303 . P _o	
13	$K = \frac{2.303}{t} log \frac{P_0}{2P_0 - Pt}$	1
	$=\frac{2.303}{300}\log\frac{0.30}{2\times0.30-0.50}$	1
	$= 0.0036 \mathrm{s}^{-1} / 3.6 \times 10^{-3} \mathrm{s}^{-1}$	_
		1
14	(i) The process of converting freshly prepared precipitate into colloidal solution by shaking it with dispersion medium in the presence of a small amount of electrolyte.	1
	(ii) The Potential difference between the fixed layer and the	1
	diffused/double layer of opposite charges. (iii) Zig-zag movement / random motion.	1
15	i. The metal is converted into its volatile compound and finally	1
	decomposed to give pure metal .	1
	ii. The different components of a mixture are differently adsorbed on an adsorbent.	1
	iii. Mineral particles are wetted by oil and gangue particles by water.	1
16	AT -i×k ×m	1/2
	$\Delta T_{f} = i \times k_{f} \times m$ $\Delta T_{f} = i \times k_{f} \times \frac{w_{B}}{M} \times \frac{1000}{M}$	/2
	$\Delta \mathbf{T}_{\mathbf{f}} = \mathbf{i} \times \mathbf{k}_{\mathbf{f}} \times \frac{\mathbf{W}_{\mathbf{B}}}{\mathbf{M}_{\mathbf{B}}} \times \frac{\mathbf{W}_{\mathbf{A}}}{\mathbf{W}_{\mathbf{A}}}$	1/4
	$\Delta T_f = 3 \times 1.86 \times \frac{3}{111} \times \frac{1000}{100}$	1/2
		1
	$\Delta T_f = 1.50 \mathrm{k}$ $\Delta T_f = T_f^0 - T_f$	1/2
	$T_f = T^0_f - \Delta T_f$, _
	= 273-1.5 / 273.15-1.50	1/2
	= 271.5 K / 271.65 K	/2
17	i. Due to greater angular strain of white phosphorus whereas red	1
	phosphorus has polymeric structure. ii. Due to stronger S-S single bond than O-O single bond.	1
	iii. Due to absence of d-orbital in Fluorine .	1
18	O O O O O O O O O O O O O O O O O O O	½×3

	(ii) (A): $C_6H_5NH_2$, (B): $C_6H_5N_2^{\dagger}CI^{-}$, (C): C_6H_5CN	½×3
19	i. 1, 3 butadiene + styrene CH=CH ₂	1
	$CH_2 = CH - CH = CH_2 + $ ii. Ethylene glycol + Terephthalic acid $HOCH_2 - CH_2OH + HOOC - COOH$	1
	iii. Caprolactum $ \begin{array}{c} H \\ N \\ N \\ H_2C \\ C=O \\ H_2C \\ CH_2 \\ H_2C-CH_2 \end{array} $	1
	(Note: Half marks for structure(s) and half mark for name(s)))
20	 (i) β D - galactose and β D-glucose/ galactose and glucose. (ii) Hydrogen bond. (iii) Nucleotide=Base+Sugar+Phosphate group Nucleoside=Base+Sugar 	1 1 ½ ½
21	a. sp ³ d ² Paramagnetic High spin	1 1/2 1/2
	b. As (en) is bidentate chelating ligand & F- is a monodentate ligand.	1
22	i. CI CH_3 $Ether$ $Ether$	1
	ii. $CH_3 - CH_2 - CH = CH_2 \xrightarrow{HBr} CH_3 - CH_2 - CH - CH_3 \xrightarrow{(alc.) KOH} CH_3 - CH = CH - CH_3$ $\downarrow Br$	1
	iii. $C_2H_5OH \xrightarrow{\text{Red P/I}_2} C_2H_5I$ (or any other correct method)	1
	OR	

22		
	i. $CH_3 - CH_2 - CH_2 - CH_2 - CI + alc.KOH \longrightarrow CH_3 - CH_2 - CH = CH_2 / CH_3 - CH = CH - CH_3$	1
	$2CH_3 - CH - CH_3 + 2Na$ $CH_3 - CH - CH - CH_3$	
	ii.	
	Cl ether CH ₃ CH ₃	1
	iii.	
	+CH,-Cl -anhyd. AICl3 + CH, + C	
	+CH,-Cl	
	CH,	1
23	(i) Caring nature, supportive, aware (any other two suitable values)	1/2 + 1/2
	(ii) Antacids are the medicines used to control acidity in stomach.	1+ ½
	Ex – mixture of aluminium and magnesium hydroxide / sodium	
	hydrogen carbonate / Zantac / Ranitidine	
	(any other suitable example))
	(iii) No, Excessive antacid can make the stomach alkaline and	
	trigger the production of more acids.	1/2 + 1
24	a. $\triangle G^0 = -n F E^0_{cell}$	1/2
	$\Delta G^0 = -6 \times 96500 \times 2.02$	
	$\Delta G^0 = -0.896300 \times 2.02$ $\Delta G^0 = -1169580 J/mol$	1
		1/2
	$\mathbf{E}_{\mathbf{m}}^{0} = \frac{0.059 \mathrm{V}}{\mathrm{D}} \log \mathrm{Kc}$	
	2.02V×6	
	$\log K_{\zeta} = \frac{252 \text{ V/V}}{0.059 \text{ V}}$	1
	= 205.42	1
	203.42	1+1
	b. A , because its E ⁰ value is more negative.	
	OP	
24	OR OR	1/2
∠ ∃	(a) a. $\Lambda^{c}_{m} = \kappa \times 1000/C$ = 3.905 × 10 ⁻⁵ × 1000/ 0.001	12
	= 39.05 S cm ² /mole	1
	$CH_3 COOH \rightarrow CH_3COO^- + H^+$	
	$\Lambda^{0} \text{ CH}_{3}\text{COOH} = \lambda^{0} \text{ CH}_{3} \text{ COO-} + \lambda^{0} \text{ H}^{+}$ =349.6 + 40.9	
	=349.6 + 40.9 $\Lambda^0 \text{ CH}_3 \text{COOH} = 390.5 \text{ S cm}^2/\text{mol}$	
	$\alpha = \frac{A_{\rm m}}{A_{\rm m}}$	1/2
	$\alpha = \frac{1}{\Lambda_{\rm m}^0}$	12
	= 39.05/ 390.5	
	= 0.1	1

	b. Primary cell $Zn + 2NH_4^+ + 2MnO_2 \rightarrow Zn^{++} + 2NH_3 + 2MnO(OH)$	1+1
25	 a. (i) Due to higher oxidation state of Mn in Mn₂O₇. (ii) Due to Lanthanoid contraction. (iii) Due to availability of vacant d-orbitals. 	1 1 1
	b. $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ $KMnO_4$ diamagnetic K_2MnO_4 paramagnetic.	1 ½ ½
25	 OR a. (i) High ionization enthalpy/Low hydration enthalpy. (ii) Cr, Cr²⁺ is oxidized to Cr ³⁺ which has stable d³ / t³_{2g} orbital configuration. (iii) Due to d¹⁰ configuration/no unpaired electrons. 	1 ½ + ½ 1
	b. (i) $4\text{FeCr}_2\text{O}_4 + 8\text{Na}_2\text{CO}_3 + 7\text{O}_2 \rightarrow 8\text{Na}_2\text{CrO}_4 + 2\text{Fe}_2\text{O}_3 + 8\text{CO}_2$ (ii) $2\text{Na}_2\text{CrO}_4 + 2\text{H}^+ \rightarrow \text{Na}_2\text{Cr}_2\text{O}_7 + 2\text{Na}^+ + \text{H}_2\text{O}$	1 1
26	a. (i) $C_6H_5OH+CH_3I$	1
	CH_3 (ii) $CH_3 - C = CH_2$	1
	(iii)	1
	b. (i) OH $CHCl_3+aq NaOH$ ONa $CHCl_3+aq NaOH$ ONa OH	1
	OCH, OCH, OCH, OCH, + CH, CS, CH, CH,	1

26	a.	(i) $OH \longrightarrow O_{2}N \longrightarrow NO_{2}$ NO_{2}	1
		(ii) OH COOH + (CH,-CO),O — + CH,COOH + CH,COOH	1
	b.	 (iii) C₂H₅Cl+NaOCH₃ → C₂H₅OCH₃+NaCl (i) Heat both compounds with NaOH and I₂, Ethanol gives yellow ppt of iodoform. Phenol does not. (ii) Heat both compounds with NaOH and I₂, Propan-2ol gives yellow ppt of iodoform. 2-Methylpropan-2-ol does not. (any other suitable test) 	1 1 1