CBSE Class 12 Chemistry Question Paper Solution 2016

MARKING SCHEME -CHEMISTRY 2016 SET -56/1/N

Q.N.	Value Points	Marks
1.	(i) , Inversion of configuration	1/2 + 1/2
2.	NO ₂	1
3.	Due to presence of free electrons at interstitial sites, / metal excess defect	1
4.	N-methyl-2-methylpropanamine / 2-methyl-N-methylpropanamine	1
5.	Like Charged particles cause repulsion/ Brownian motion/ solvation	1
6.	(i) Osmotic pressure (ii) Positive deviation from Raouls' law/ Positive deviation	1
7	(i) (ii)	1+1

8.		
	(i) [Ni(H ₂ O) ₆] Cl ₂	1
	(ii) Hexaaquanickel(II) chloride	1
9.	(i) zero order , bimolecular/ unimolecular (II) mol L ⁻¹ s ⁻¹	½+½ 1
	(,	

10.	(i)	
	OH ONa OH COOH (i) CO ₂ (ii) H 2-Hydroxybenzoic acid (Salicylic acid)	1
	(ii) OCH ₃ + CH ₃ COCl Anhyd. AlCl ₃ COCH ₃ COCH ₃ COCH ₃	1
	OR	
10	(i)	1
	(ii) $HCHO+CH_3MgX \longrightarrow CH_3CH_2OMgX \xrightarrow{H_2O/H+} CH_3CH_2OH$	1
11.	Volume of the unit cell = a^3 = $(400 \text{ pm})^3$ = $(4 \times 10^{-8} \text{ cm})^3$ = $64 \times 10^{-24} \text{ cm}^3$ Volume of 280 g of the element = mass / density = $280/7 \text{ cm}^3$ = 40 cm^3	1
	Number of unit cells in this volume = $40 / 64 \times 10^{-24} = 6.25 \times 10^{23}$ unit cells.	1
	Therefore, total no. of atoms in 280g = $4 \times 6.25 \times 10^{23}$ = 2.5×10^{24} atoms. (or any other correct method)	1
12.	log k = log A - $E_a/2.303RT$ $E_a / 2.303 RT = 1 \times 10^4 k/T$ $E_a = 1.0 \times 10^4 \times 2.303 \times 8.314$	1/2
	=191471.4 J/mol	1

	t _{1/2} =0.693/ k	1/2
	k = 0.693/200	
	$= 0.0034 \text{min}^{-1} / 3.4 \times 10^{-3} \text{min}^{-1}$	1
13	(i) Oil as dispersed phase and water as dispersion medium	1
	(ii) The potential difference between fixed layer and diffused / double	1
	layer of opposite charges.	
	(iii) Large number of atoms or smaller molecules of a substance aggregate	
	together to form species having size in colloidal range.	1
14	1. Chromatography	1
	2. To Separate two sulphide ores	1
	3. It decomposes to CaO which removes impurity (silica) as slag/ Acts	1
	as flux.	

	as flux.	
15	$\Delta T_b = i K_b w_b x 1000 M_b x w_a$	1/2
	$\Delta \text{ Tb} = \frac{3 \times 0.52 \times 2 \times 1000}{142 \times 50}$ = 0.439 K	1
	= 0.439 K Δ Tb = T _b -T _b ⁰ T _b = 0.439 +373 = 373.439K (OR 373.589 K)	1/2
	1 _b = 0.459 +575 = 375.459k (OK 375.569 K)	1
16.	(i) Due to presence of two P-H bonds in H_3PO_2 / In H_3PO_2 O.S of P = +1 which can increase but in H_3PO_4 O.S of P = +5 (max.)	1
	(ii) Due to stronger S-S bond than O-O bond.	1
	(iii) Size of halogen increases / bond length increases /bond dissociation enthalpy decreases (any one)	1
17.	(i) Sr	1
	(ii) CH2-CH3-CH2Br	1
	(iii) HO (CH ₂ CI	`1
18.	(a) . In phenols lone pair of electron on oxygen are delocalized over benzene	1
	ring due to resonance but in alcohol lone pair of electron on oxygen are localized & hence available for protonation / + R- effect in phenol but not in	

	ethanol.	
	(b) Due to intermolecular Hydrogen bonding	1
	(c) Weaker (O-CH ₃) bond and stronger(O-C ₆ H ₅) bond ,due to resonance /	1
	carbon in benzene is sp ² hybridized due to which partial double bond character.	_
	carbon in benzene is sp. Hyshaized due to which partial double sond character.	
19.		
	(i) A: $C_6 H_5 CONH_2$	1/2
	B :C ₆ H ₅ NH ₂	1/2
	C: C ₆ H ₅ NHCOCH ₃	1/2
	(ii) A: C ₆ H ₅ NO ₂	1/2
	B: C ₆ H ₅ NH ₂	1/2
	$C: C_6H_5 NC$	1/2
20.	(i) Catalyst / initiator of free radical	1
20.	(ii) Hexamethylene diamine and adipic acid / structure / IUPAC name	1
	(iii) Buna-S <polythene<nylon 6,6<="" td=""><td>1</td></polythene<nylon>	1
	(III) Bulla-3 <polytheriesnylott 0,0<="" td=""><td> 1</td></polytheriesnylott>	1
	OR	
20.	Chain initiation steps	
	$C_{s}H_{s}\overset{-}{\subset}-\overset{\circ}{O}\overset{V}{O}\overset{-}{\subset}-C_{e}H_{s}$ \longrightarrow $2C_{e}H_{s}\overset{-}{\subset}-\overset{\circ}{O}$ \longrightarrow $2\overset{\circ}{C}_{e}H_{s}$ Benzoyl peroxide Phenyl radical	
	$\dot{C}_{6}H_{5}+CH_{2}=CH_{2} \longrightarrow C_{6}H_{5}-CH_{2}-\dot{C}H_{2}$	1
	Chain propagating step	_
	$C_6H_5-CH_2-\overset{\bullet}{C}H_2+CH_2=CH_2\longrightarrow C_6H_5-CH_2-CH_2-\overset{\bullet}{C}H_2$	
		1
		1
	$C_6H_5+CH_2-CH_2+\frac{\dot{C}H_2}{n}CH_2-\frac{\dot{C}H_2}{n}$ Chain terminating step	
	For termination of the long chain, these free radicals can combine	
	in different ways to form polythene. One mode of termination of chain is shown as under:	1
	$C_{\phi}H_{s}+CH_{2}-CH_{2}-\frac{\dot{c}}{h_{2}}CH_{2}-\frac{\dot{c}}{h_{2}}$	1
	\rightarrow C H +CH - CH + CH - CH + CH - CH + C H	
	$C_9H_5 + CH_2 - CH_2 + CH_2 - CH_2$	
21.	(i) Sodium Hydrogen Sulphite reaction/ Pentaacetate of glucose does not react	1
	with Hydroxylamine/Schiff's test (any one)	
	(ii) Phosphodiester linkage	1
	(iii) Fat soluble - Vitamin A/D /E/ K	1/2
	Water soluble - Vitamin B /C	1/2
22.	·	
	(a) d^2sp^3 ,	1
	Diamagnetic,	1/2
	low spin	1/2
	- r	
		<u> </u>

	(b)	
	CI CI I	
	en Co	1
		1
	(en'	
23.	(i) Aware, concerned or any other two correct values	1/2 +1/2
	(ii) Side effects/ health problems	1
	(iii) Neurologically active drugs/ stress relievers/drugs used to treat mental diseases	1
	example- valium, equanil (or any other two correct example)	1/2 +1/2
	example validity equality of any other evo correct example,	72 . 72
24.	(a) $E_{cell} = E_{cell}^0 - 0.059 \log [Cr^{3+}]^2$	1/2
	n [Fe ²⁺] ³	_
	$0.261 \text{ V} = \text{E}^{0}_{\text{cell}} - \underline{0.059} \log [0.01]^{2}$ $6 \qquad [0.01]^{3}$	1
	$0.261 \text{ V} = \text{E}^{0}_{\text{cell}} - 0.059 \log 100$	1/2
	6 6	/2
	$E_{cell}^0 = 0.261 + 0.0197$	1
	= 0.2807V	
	(b) A , due to its more negative E ⁰ value.	1+1
	(b) // , due to its more negative E value.	1.1
	OR	
24	(a).	
	$\Lambda^{c}_{m} = \kappa \times 1000/C$	1/2
	= $3.905 \times 10^{-5} \times 1000/0.001$ = $39.05 \text{ S cm}^2/\text{mole}$	1
	$CH_3 COOH \rightarrow CH_3COO^- + H^+$	
	$\Lambda^0 \text{ CH}_3 \text{COOH} = \lambda^0 \text{ CH}_3 \text{ COO-} + \lambda^0 \text{ H}^+$	
	= 40.9 + 349.6 $\Lambda^0 \text{ CH}_3 \text{COOH} = 390.5 \text{ S cm}^2/\text{mol}$	
	4	1,
	$\alpha = \frac{\Lambda_{\rm m}}{\Lambda^0}$	1/2
	= 39.05/390.5	
	= 0.1	1
	(b). Device used for the production of electricity from energy released during	
	spontaneous chemical reaction and the use of electrical energy to bring about a	1
	chemical change.	
	The reaction gets reversed / It starts acting as an electrolytic cell & vice -	1
	versa.	
	f 1	1

25.	(a) (i) Ability of oxygen to form multiple bond .	1
	(ii)Due to lanthanoid contraction.	1
	(iii)Due to variable oxidation state/unpaired electrons	1
	(1) (1) 214 2 44211 2 2444 2 244	
	(b) (i) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$	1
	(ii) $Cr_2O_7^{2-} + 14 H^+ + 6I^- \rightarrow 2Cr^{3+} + 7H_2O + 3I_2$	1
	OR	
25	(i) Zn, because of not having partially filled d-orbital in its ground state or	½+1
	ionic state.	
	(ii) Cr	1
	(iii) Cu (iv) Mn, because Mn ⁺² has extra stability due to half filled d-orbital	1 ½+1
26.	(1V) 1VIII , Decause IVIII has extra stability due to hall filled a offsital	1/2
	a). A : CH₃CHO B : OH	×4=2
	CH ₃ —CH—CH ₂ CHO	
	C: CH ₃ —CH=CH—CHO D: OH	
	CH ₃ —CHCN	
	b) i)Heat both the compounds with NaOH and I ₂ , C ₆ H ₅ -CH=CH-COCH ₃ gives	1
	yellow ppt of iodoform while C ₆ H ₅ -CH=CH-CO CH ₂ CH ₃ does not.	
	ii)Add ammonical silver nitrate solution (Tollens' reagent), HCOOH gives silver mirror while CH ₃ CH ₂ COOH does not.	1
	c) CH ₃ COCH ₃ <ch<sub>3CH₂OH <ch<sub>3COOH</ch<sub></ch<sub>	1
		_
	OR	
26		
	a.)	
	CH ₃ CH(OCrOHCl ₂) ₂ CHO	
	$+ \operatorname{CrO_2Cl_2} \xrightarrow{\operatorname{CS_3}} \longrightarrow \longrightarrow \longrightarrow$	
	Toluene Chromium complex Benzaldehyde	1
	b) C ₆ H ₅ COCH ₃ <ch<sub>3CHO< HCHO</ch<sub>	1
	c) stronger -I effect of Cl , stronger acid less pk _a / strong electron withdrawing	1
	power of CI. d)CH ₃ CH ₂ CH=CH—CH ₂ CHO	1
	e) A: CH ₃ COCH ₃	1/2
	, , , , , , , , , , , , , , , , , , , ,	1/2
	B: CH₃CH₂CHO	1/2