CBSE Class 12 Chemistry Question Paper Solution 2016

MARKING SCHEME 2016- CHEMISTRY(043)

Set 56 / 1/S

Q. No.	Value Points	Marks
1	CH ₂ =CH-CH ₂ Cl	1
2	NO_2	1
3	Anti-ferromagnetism	1
4	2,4-dibromoaniline / 2,4-dibromobenzenamine	1
5	Like Charged particles cause repulsion/ Brownian motion/ solvation	1
6	(i) Mercury cell (ii) Fuel cell (iii) Lead storage cell (iv) Dry cell	4 x ½ =2
7	(i) A: K_2MnO_4 / MnO_4^{2-} , B: $KMnO_4 / MnO_4^{-}$,	1/2 + 1/2
	(ii) On heating it decomposes forming K ₂ MnO ₄ and oxygen gas OR	1
0	$2KMnO_4 \longrightarrow K_2MnO_4 + MnO_2 + O_2$	1
8	(i) [Pd(NH ₃) ₄]Cl ₂	1
0	(ii) Tetraamminepalladium(II) chloride	$\frac{1}{\frac{1}{2} + \frac{1}{2}}$
9	(i) Order is zero, and molecularity is two / one.	72 + 72
	(ii) $\operatorname{mol} L^{-1} \operatorname{s}^{-1}$	1
10	(i) CH ₃ CHO Zn-Hg/HCl CH ₃ CH ₃ + H ₂ O	1
	(ii) R-CH ₂ -COOH (i) X ₂ / Red P ₄ (ii) H ₂ O R-CH-COOH	1
	$X ext{ (} X = Cl ext{ or } Br ext{)}$ (any other correct examples)	
	OR	
10	(i) C_6H_5 - CH_3 + CrO_2Cl_2 CS_2 C_6H_5 - $CH(OCrOHCl_2)_2$ H_3O^+	1
	C ₆ H ₅ -CHO	
	(ii) CH ₃ -COCl H ₂ /Pd, BaSO ₄ CH ₃ -CHO + HCl (any other correct method)	1
11	M x z	

	d =	1
	$d = \frac{1}{a^3 x N_A}$	1
	$N_A = (M \times z) / a^3 \times d = (280g \times 4) / (400 \times 10^{-10} cm)^3 \times 7gcm^{-3}$	1
	= 2.5×10^{24} atoms (or any other correct method)	1
12	$\log k = \log A - E_a / 2.303RT \; ; \qquad \log k = 14.2 - (\ 1.0x10^4 K) / T$	
	Ea 1.0 x 10 ⁴ K	17
	2.303RT T	1/2
	$E_a = 2.303 \text{ x } 8.314 \text{ J mol}^{-1}\text{K}^{-1} \text{ x } 1.0 \text{ x } 10^4 \text{ K}$	1
	$E_a = 19.15 \times 10^4 \text{ J mol}^{-1} = 191.5 \text{ kJ mol}^{-1}.$	1/
	Rate constant, $k = 0.693 / t_{1/2} = 0.693 / 200 \text{ min}$	1/2
	$= 0.0034 \text{min}^{-1} / 3.4 \times 10^{-3} \text{min}^{-1}$	10
13	(i) Silica gel	1
	(ii) H_3PO_4 is more effective in causing coagulation because of greater negative charge / Hardy Schulze Rule .	1/2 + 1/2
	(iii) Proteins	1
14	(i) van Arkel method	1
	(ii) Leaching / Bayer's Process(iii) Limestone decomposes to CaO (flux) which removes silica	1 1
	impurity as slag. Or	
	$CaCO_3$ \longrightarrow $CaO + CO_2$	
	CaO + SiO₂	
	Slag	
15		
	$E_{cell} = E_{cell}^{o} - \frac{0.0591}{6} \log \frac{[Cr^{3+}]^2}{[Fe^{2+}]^3}$	
	$6 \qquad [Fe^{2+}]^3$	1
		•
	$0.261 \text{ V} = \text{E}^{\circ}_{\text{cell}} - \frac{0.0591}{\text{log}} \frac{(0.01)^2}{\text{mod}}$	1
	0.201 (- 12 cell 105	1

	$6 (0.01)^3$	
	$0.261 \text{ V} = \text{E}^{\circ}_{\text{cell}} - \frac{0.0591}{6} \log (10^2)$	
	$0.261 \text{ V} = \text{E}^{\text{o}}_{\text{cell}} - (0.0591/6) \text{ x } 2$	
	$E^{o}_{cell} = E_{cell} + 0.0197V = 0.2807 V$	1
16	 (i) Due to multiple bonding ability of Oxygen with transition Metals / pπ- dπ bonding. (ii) Provide the provided about the control of the contro	1
	 (ii) Due to absence of unpaired electrons in zinc atom and the presence of unpaired electrons in Chromium atom. (iii) Eu²⁺ gets oxidized to more stable +3 state. 	1 1
17		
	O_2N VO_2 VO_2 VO_2 VO_2 VO_2 VO_2 VO_2 VO_2	20
	(i) NO_2 NO_2	1
	(ii) CH_3 - CH - CH_2 - CH_3 alc. KOH CH_3 - CH = CH - CH_3	1
	(iii) CH ₃ -CH ₂ -Cl + Na dry ether CH ₃ -CH ₂ -CH ₂ -CH ₃ + NaCl	1
18	(a) In ketones presence of two electron releasing alkyl groups reduce the electrophilicity of the carbonyl group more effectively than in aldehydes wherein only one alkyl group occurs / Presence of two alkyl groups in ketones provide more steric hinderance to incoming nucleophile than in	
	aldehydes where only one alkyl group occurs.	1
	(b) Due to the absence of alpha hydrogen.	1
	(c) Because the carboxyl group is deactivating and the Lewis acid AlCl ₃ gets bonded to the the carboxyl group.	1
19	(i) $A: C_6H_5CONH_2$; $B: C_6H_5NH_2$; $C: C_6H_5NHCOCH_3$	$\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$
	$\mbox{(ii)} \ \ A: C_6H_5NO_2 \ ; \ \ \ B: C_6H_5NH_2 \ ; \ \ \ C: C_6H_5NC.$	$\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$

20	(i) It acts as initiator of free radical / catalyst.	1
	(ii) CH ₂ OH-CH ₂ OH and COOH	
	СООН	
	or Ethylene glycol and phthalic acid / IUPAC name.	1
	(iii) Buna-N < PVC < Nylon-6	1
20	OR	
20	Chain initiation steps $C_{\theta}H_{3} - C_{0} - C_{0} - C_{0} - C_{0} - C_{0} + C_{0} - C_{0} -$	1
	Chain propagating step	
	$C_0H_5-CH_2-\dot{C}H_2+CH_2=CH_2$ \longrightarrow $C_0H_5-CH_2-CH_2-\dot{C}H_2$	1
	$C_{b}H_{a} + CH_{2} - CH_{2} + \dot{C}H_{2} - \dot{C}H_{2}$	
	Chain terminating step For termination of the long chain, these free radicals can combine in different ways to form polythene. One mode of termination of chain is shown as under:	5
	$C_0H_5+CH_2-CH_2+\frac{1}{2}CH_2-CH_3$	1
	$C_{0}H_{5} + CH_{2} - CH_{2} + CH_{2} - CH_{3} + CH_{2} - CH_{3} + CH_{2} - CH_{2} + CH_{2} - CH_{2} + CH_{2} - CH_{3} + CH_{2} - CH_{3} + CH_{3} + CH_{3} - CH_{3} + CH_{3}$	VOY
21	 (i) α-D-Glucose and α-D-Glucose / Glucose and Glucose. (ii) Vitamin-B₆ / Pyridoxine. (iii) Fibrous protien: Keratin / Myosin / Kephalin Globular protien: Insulin / Albumin / Haemoglobin (or any other one) 	1 1 1/2 1/2
22	(a) sp ³ d ² hybridisation; Paramagnetic; High spin complex.	$1 + \frac{1}{2} + \frac{1}{2}$
	(b) en Cl +	1
23	i) Aware, concerned or any other correct two values.	1/2 + 1/2
	(ii) Side effects, unknown health problems	1
	(iii)Neurologically active drugs/ stress relievers	1
	example- valium, equanil (or any other correct two examples)	1/2 + 1/2
24	(a) (i) Due to decrease in bond enthalpy from H_2S to H_2Te / Larger H-Te bond than H-S bond allowing more dissociation of H_2Te .	1
	(ii) $+5$ oxidation state of P in PCl ₅ makes it more covalent/ high charge to size ratio.	1

	(iii) Interhalogen compounds are slightly polar having dipole-	1
	dipole forces but pure halogens non-polar, have weak van der Waals forces.	
	(b) (i) (ii) P (ii)	1+1
24	OR	1
24	(i) H ₃ PO ₄ < H ₃ PO ₃ < H ₃ PO ₂ (ii) Xe; Lower ionization enthalpy of Xe than He.	$\frac{1}{\frac{1}{2} + \frac{1}{2}}$
	(iii) High pressure, optimum temperature, Use of catalyst (iv) For bleaching woodpulp / cotton / textiles/ Extraction of gold / Platinum/	1
	Manufacture of dyes/ drugs/ CHCl _{3/} CCl _{4/} DDT/	$\frac{1}{2} + \frac{1}{2}$
	Sterilising water, etc (or any other two uses)	
	(v) SO ₂ decolourises acidified dilute solution of KMnO ₄ / changes	
	orange color of aidified K ₂ Cr ₂ O ₇ to green.	1
25	(a) (i) CH ₂ = CH- CHO	1
	(ii) C ₆ H ₆ /	1
	(iii) OCH, OCH,	
	(b)	1
	(i) $CH_3-CH_2-\overset{\bullet}{O}-H + \overset{\bullet}{H^+} \longrightarrow CH_3-CH_2-\overset{\bullet}{O}-H$	1/2
	(ii) $CH_3CH_2 = \overset{\circ}{O}: + CH_3 = CH_2 = \overset{\circ}{O} + CH_3CH_2 = \overset{\circ}{O} + CH_3CH_3 + H_2O$	1
	(iii) $CH_3CH_2 \xrightarrow{+} CH_2CH_3 \longrightarrow CH_3CH_2 \xrightarrow{-} CH_2CH_3 + \overset{+}{H}$	1/2
	OR	
25	(a) (i)	
		1

	$ \begin{array}{c c} OH & OH \\ \hline Br_2 \text{ in } CS_2 \\ \hline 273 \text{ K} & + \\ \end{array} $ (ii)	1
	CHCl ₃ + aq NaOH CHCl ₂ NaOH OH CHCl NaOH OH CHO H CHO	1
	(iii) O-CH ₃ O-H + HI \longrightarrow CH ₃ -I	1
	 (b) (i) On treatment with acetic acid or acetic anhydride in presence of drops of H₂SO₄, ethanol gives pleasant smell but Diethyl ether does not. (ii) On treatment with anhy.ZnCl₂ and HCl, ter-butyl alcohol 	1
	gives immediate turbidity but Propanol does not. (or any other correct test)	1
26	(a) $\Delta T_b = i K_b m$	1
	$\Delta T_b = i K_b w_b x 1000$	1
	M _b x w _a	
	$T_{b}-T_{b}^{0} = \frac{3 \times 0.52 \text{ k kg/ mol } \times 2 \times 1000 \text{ g kg}^{-1}}{142 \times (3000 \text{ g kg}^{-1})}$	1
	$142 \text{ g/mol} x 50 \text{ g}$ $T_{b} - 373 \text{ K} = 0.44 \text{K} ; T_{b} = 373.44 \text{ K} / 100.44 \text{°C}$	1
	(b) (i) Properties of dilute solutions that depend on the number of particles of solute but not on nature of the solute particles are called colligative properties.	1
	(ii) The solutions which obey Raoult's law over the entire range of concentration are known as ideal solutions.	1
	OR	
26	(a) $\Delta T_f = K_f m$; or $M_B = K_f (w_B x 1000) / (\Delta T_f x w_A)$	1/2
	$M_B = (3.83 \times 2.56 \times 1000) / (0.383 \times 100)$	1
	$= 256 \text{ g mol}^{-1}$	1/2
	Atomicity = $256 / 32 = 8$ Formula of Sulphur = S_8 .	1
	1 orman or purpher – bg.	1

(b) (i) Shrinks	
(ii) Swells	1
	1