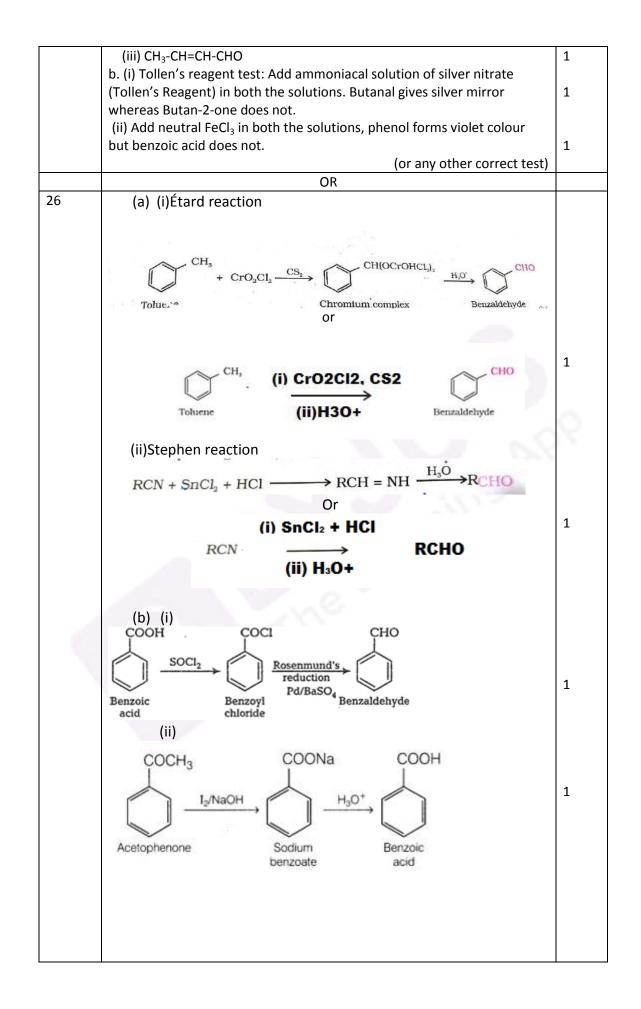
CBSE Class 12 Chemistry Question Paper Solution 2017

Marking scheme – 2017

CHEMISTRY (043)/ CLASS XII

Outside Delhi set (56/1)


Q No.	Value Points	Marks
1.	H ₃ PO ₄	1
2.	2-Bromo-3-methylbut-2-en-1-ol	1
3.	a. Decreases	1/2
	b. No effect	1/2
4.	×	1
5.	Gel e.g. cheese, butter, jellies (any one)	1/2 + 1/2
6.	a. p-cresol < Phenol < p-nitrophenol	1
	**	0
	$>C = C < + H - \bigcirc^{H}_{O} + H \implies -\overset{H}{\bigcirc} - \overset{H}{C} < + H_2 \bigcirc$	1
	$C = C < + H - \ddot{O} - H \leq -C - C < + H^{3}\ddot{O}$	
	b.	
	OR	
6	a. $H_3C \underbrace{O}_{CH_3}$	1
		1
7.	n= given mass / molar mass	1/2
	= 8.1 / 27 mol	1/2
	Number of atoms= $\frac{8.1}{27}$ x 6.022x10 ²³	
	Number of atoms in one unit cell= 4 (fcc)	
	Number of unit cells = $\left[\frac{8.1}{27} \times 6.022 \times 10^{23}\right] / 4$	1/2
	$= 4.5 \times 10^{22}$	1/2
	Or	
	27g of Al contains= 6.022×10^{23} atoms	1/2
	8.1g of AI contains =(6.022×10^{23} / 27) x 8.1 No of unit cells = total no of atoms /4	1/2
		1/
	$=\left[\frac{8.1}{27} \times 6.022 \times 10^{23}\right] / 4$	1/2
	$=4.5 \times 10^{22}$	1/2

8.		6	1,1
	X.com	Ħ	
	$\overline{(\cdot)}$	0	
	\smile	Ť	
	S	CI	
	но о	OT	
	но	ь) <u>о</u>	
9.	a.) Mercury cell	b.)	1
9.	Anode : $Zn(Hg) + 2OH^{-} \rightarrow ZnO(s) + H_2O$) + 2e ⁻	1/2
	Cathode : HgO + H ₂ O + 2e \rightarrow Hg(I) + 2		1/2
10.	(i) Na[Au(CN) ₂]		1
	(ii) [Pt(NH ₃) ₄ Cl (NO ₂)]SO ₄		1
11.	(a) Covalent solid / network solid , m	nolecular solid	1/2 + 1/2
	(b) $ZnO \xrightarrow{Heating} Zn^{2+} + 1/2 O_2 + 2e^{-}$		
		erstitial sites and the electrons move	
	to neighbouring voids		1
	(c) Compounds prepared by combin	ation of groups 12 and 16 behave	1/ . 1/
	like semiconductors. For eg ZnS, CdS	, CdSe, HgTe (Any one)	1/2 + 1/2
12.	()0		0
	(a) $\Delta G^0 = -nFE^0_{cell}$		1/2
	n= 2 ΔG ⁰ = - 2 x 96500 C /mol x 0.236 V		1/2
	= - 45548 J/mol		/2
	= -45.548 kJ/mol		1/2
			· -
	(b) Q=It = 0.5 x 2 x 60 x 60		1/2
	= 3600 C		
	96500 C = 6.023×10^{23} electrons		
	$3600 \text{ C} = 2.25 \times 10^{22} \text{ electrons}$	2	1
13.	(a) Linkage isomerism		1
6	(b) In [NiCl ₄] ²⁻ ,due to the pre	sence of Cl ⁻ , a weak field ligand	1
	no pairing occurs whereas	in $[Ni(CN)_4]^{2-}$, CN^- is a strong	1
	field ligand and pairing tak	es place / diagrammatic	
	representation		
		which is not able to pair up the	1
	electrons.		
14.			
	Multimolecular colloid	Associated colloid	1
	(a) Aggregation of large number of small atoms or	(a) Aggregation of large number of ions in	1
	molecules.	concentrated solutions.	
	(b)		
	Coagulation	Peptization	
	(a) Settling down of colloidal	(a) Conversion of precipitate	
	particles.	into colloidal sol by	1
		adding small amount of	

		electrolyte.	
		cicotionytei	
	<u>(c)</u>		
	Homogenous catalysis Hete	rogeneous catalysis	
	(a) Reactants and catalyst (a) Reactants and catalyst	
	are in same phase.	are in different phases.	1
14	OR	ien mediume linuid	1
14	(a) Dispersed phase-liquid , Dispers		1
	(b) Both are surface phenomenon / b		1
	surface area (or any other correct s (c) Hydrolysis / FeCl ₃ +3H ₂ O ^{hydro}		1
1 Г			
15.	$t = \frac{2.303}{k} \log \frac{1}{k}$		1/2
	k ^e		
	2 202	100	
	20 min = $\frac{2.303}{k}$ la	$Dg \frac{100}{75}$ - (i)	1/2
			/-
	$t = \frac{2.303}{k} \log \frac{1}{2}$	$\frac{00}{25}$ -(ii)	
	$l = \frac{109}{k}$	25 (11)	1/2
		(11)	X
	Divide (i) equation by	/ (II)	
	20 2.303 . 10	0	
	$\frac{20}{t} = \frac{2.303}{k} \log \frac{10}{7}$	5	1/2
	$\frac{2.303}{k}\log\frac{10}{25}$	5	
	n.	-0°	
	$= \frac{\log 4/3}{\log 4}$		
	20/t = 0.1250	0/ 0 6021	
	t= 96.3 min	57 0.0021	1
		r any other correct procedure)	-
16.	(i) 1- Bromopentane	,,	1
	(ii) 2-Bromopentane		1
	(iii) 2-Bromo-2-methylbutane		1
17.	(a) Zone Refining – Impurities are more	soluble in the melt than in the	1
	solid metal.		
	(b) Mineral particles are wetted by oil	s forming froth while gangue	1
	particles are wetted by water and		
	(c) Different components of a mixture	are differently adsorbed on an	1
	adsorbent.		
18.	(a) (A) CH_3CONH_2		1/2
	(B) CH_3NH_2		1/2
	(C) CH ₃ NC		1/2
	NO ₂		
			1/2
	(b) (A)		/2
	NH ₂		
			1/2
	(B)		-/-

	(C)	1/2
	$H-N-C-CH_3$	/2
19.	(a) H ₂ N-(CH ₂) ₆ -NH ₂ , HOOC-(CH ₂) ₄ -COOH	1
	(b)	1
	$H_2N \neq N \neq NH_2$	
	NH ₂ and HCHO	
	(c) $CH_2=CH-CH=CH_2$, $C_6H_5-CH=CH_2$	1
20.	 (a) Anionic detergents are sodium salts of sulphonated long chain alcohols or hydrocarbons / alkylbenzene sulphonate or 	
	detergents whose anionic part is involved in cleansing action.	1
	(b) Limited spectrum antibiotics are effective against a single	
	organism or disease.(c) Antiseptics are the chemicals which either kill or prevent growth	1
	of microbes on living tissues.	1
21.	(a) Red phosphorous being polymeric is less reactive than white	1
	phosphorous which has discrete tetrahedral structure.(b) They readily accept an electron to attain noble gas configuration.	1
	(c) Because of higher oxidation state(+5) of nitrogen in N_2O_5	1
22.	(i) Due to the resonance, the electron pair of nitrogen atom gets	
	delocalised towards carbonyl group / resonating structures. (ii)Because of +I effect in methylamine electron density at nitrogen	1
	increases whereas in aniline resonance takes place and electron	1
	density on nitrogen decreases / resonating structures. (iii)Due to protonation of aniline / formation of anilinium ion	1
23.	(i) Concerned , caring, socially alert, leadership (or any other 2	1/2 + 1/2
	values)	1
	 (ii) Starch (iii) α -Helix and β-pleated sheets 	$\frac{1}{2} + \frac{1}{2}$
	(iv) Vitamin B / B_1 / B_2 / B_6 / C (any two)	1/2 + 1/2
24.	a. (i) Availability of partially filled d-orbitals / comparable energies of ns	1
	and (n-1) d orbitals (ii) Completely filled d-orbitals / absence of unpaired d electrons cause	1
	weak metallic bonding	
	(iii) Because Mn^{2+} has d ⁵ as a stable configuration whereas Cr^{3+} is	1
	more stable due to stable t_{2g}^3	
	b) Similarity-both are stable in +3 oxidation state/ both show contraction/ irregular electronic configuration (or any other suitable	1
	similarity)	
	Difference- actinoids are radioactive and lanthanoids are not /	
	actinoids show wide range of oxidation states but lanthanoids don't	1
	(or any other correct difference)	
	OR	
24	a. (i) Cr^{3+} , half filled t^{3}_{2g}	1/2 + 1/2
	(ii) Mn ³⁺ , due to stable d ⁵ configuration in Mn ²⁺	$\frac{1}{2} + \frac{1}{2}$

	(iii) Ti ⁴⁺ , No unpaired electrons		1/2 + 1/2
	b. (i) $2MnO_4^- + 16H^+ + 5S^2 \rightarrow 5S + 2$		1
	(ii) $2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$	-	1
25	a) $\Delta T_f = K_f m$		1/2
	Here , $m = w_2 x \ 1000 / M_2 X M_1$		
	273.15-269.15 = K _f x 10 x1000/ 342 x90		1
	K _f = 12.3 K kg/mol		1/2
	$\Delta T_{\rm f} = K_{\rm f} m$		
	= 12.3 x 10 x1000/ 180x90 = 7.6 K		
	$T_f = 273.15 - 7.6 = 265.55 \text{ K}$	(or any other correct method)	1
	b) (i) Number of moles of solute dissolved	d in per kilo gram of the solvent.	1
	(ii) Abnormal molar mass: If the molar r	nass calculated by using any of the	
	colligative properties to be different that	an theoretically expected molar	1
	mass		
		OR	
25.	(a) $(P_A^0 - P_A)/P_A^0 = (w_B \times M_A)/(M_A^0)$	$M_B \times w_A$)	1/2
	$\frac{23.8 - P_A}{23.8} = (30)$	\times 18) /60 \times 846	
	-23.8 - (30)	~ 10) / 00 ~ 040	1
			2
	$23.8 - P_A = 23.8 \times [0]$	$(30 \times 18) / 60 \times 846]$	1/2
			/2
	22.0	0 2522	
	$23.8 - P_A = P_A = -2255$		
	$P_A = 23.55 mm Hg$		
	(b)		
	Ideal solution	Non ideal solution	
1.1	(a) It obeys Raoult's law	(a) Does not obey Raoult's	
8			
	over the entire range of	law over the entire	1 +1
	concentration.	range of concentration.	
	(b) $\Delta_{mix} H = 0$	(b) $\Delta_{mix}H$ is not equal	
	(c) $\Delta_{mix} V = 0$		
		to 0.	
		(c) $\Delta_{mix} V$ is not equal	
		to 0.	
		(any two correct difference)	
26.	а.		
	OH		1
	CN		1
	(i) V		
	\bigcirc		
			1
	(ii) V		1

(c) $CH_3COOH \xrightarrow{Cl_2/P} CH_2COOH \xrightarrow{KOH(Aq)} CH_2COOH$	1
CI OH	
(or any other correct method)	

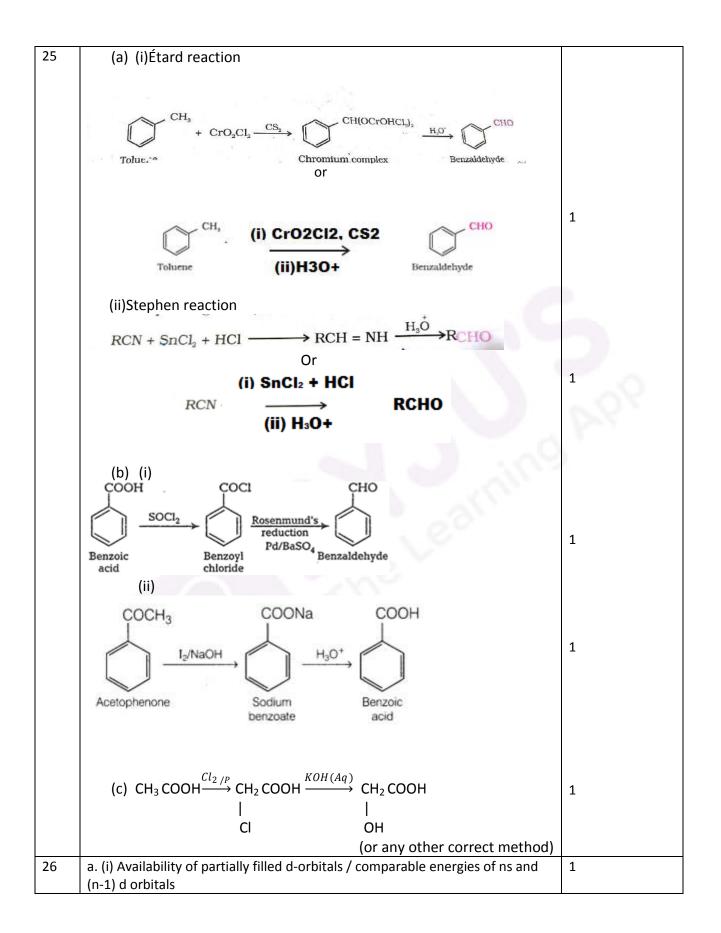
1	Dr. (Mrs.) Sangeeta Bhatia	12	Sh. S. Vallabhan	
2	Dr. K.N. Uppadhya	13	Dr. Bhagyabati Nayak	
3	Prof. R.D. Shukla	14	Ms. Anila Mechur Jayachandran	
1	Sh. S.K. Munjal	15	Mrs. Deepika Arora	
5	Sh. D.A. Mishra	16	Ms. Seema Bhatnagar	
5	Sh. Rakesh Dhawan	17	Mrs. Sushma Sachdeva	-0
7	Dr. (Mrs.) Sunita Ramrakhiani	18	Dr. Azhar Aslam Khan	Por
3	Mrs. Preeti Kiran	19	Mr. Roop Narain Chauhan	
)	Ms. Neeru Sofat	20		
10	Sh. Pawan Singh Meena	21	Ms. Abha Chaudhary	
11	Mrs. P. Nirupama Shankar	22	Ms. Garima Bhutani	

Marking scheme – 2017

CHEMISTRY (043)/ CLASS XII

Outside Delhi set (56/2)

Q.No	Value points	Marks
1.	a. Decreases	1/2
	b. No change	1/2
2.	Sol : example- paints, cell fluids (any one)	$\frac{1}{2} + \frac{1}{2}$
3.	3-phenyl-prop-2-en-1-ol	1
4.	H ₂ SO ₄	1
5.	X	1
6.	(i) [Cr(en) ₃]Cl ₃ (ii) K ₂ [Zn(OH) ₄]	1 1
7.		1
		1
8.	Lead storage battery Anode : $Pb_{(s)}+SO_4^{2^-}_{(aq)} \rightarrow PbSO_{4(s)} + 2e^-$ Cathode : $PbO_2+SO_4^{2^-}_{(aq)} + 4H^+ + 2e^- \rightarrow PbSO_{4(s)} + 2H_2O_{(l)}$	1 ½ ½
9.	n= given mass / molar mass = 8.1 / 27 mol Number of atoms= $\frac{8.1}{27} \times 6.022 \times 10^{23}$ Number of atoms in one unit cell= 4 (fcc) Number of unit cells = $[\frac{8.1}{27} \times 6.022 \times 10^{23}] / 4$	1/2 1/2 1/2
	$= 4.5 \times 10^{22}$	1/2


· · · · · ·		1
	Or 22	
	27g of Al contains= 6.022x10 ²³ atoms	1/2
	8.1g of AI contains =(6.022×10^{23} / 27) x 8.1	1/2
	No of unit cells = total no of atoms /4	/-
	$=\left[\frac{8.1}{27} \times 6.022 \times 10^{23}\right] / 4$ =4.5 ×10 ²²	1/
	$\frac{1}{27}$ × 0.0212×10 $\frac{1}{17}$	1/2
	=4.5 X10	1/2
10.	a. p-cresol < Phenol < p-nitrophenol	1
	$>C = C < + H - O + H \implies -C - C < + H_2O$	
		1
	$>C = C < + H - O - H \implies -C - C < + H_2O$	
	b.	
	OR	
	UR	
10		
	0	1
	H ₃ C	
	~ (Ha	
	a. Ong	0
	b.	
	b.	
	Cl	1
	H ₃ C	1
	CH ₃	
	(a)Metal is converted into volatile compound which on strong heating is	1
11.	decomposed to give pure metal.	
	(b)It acts as a leaching agent / forms soluble complex with Ag	1
	(c)Enhances non-wettability of mineral particles. For e.gPine oil, Fatty acids,	
	xanthates (Any one).	$\frac{1}{2} + \frac{1}{2}$
	(a) (A) CH_3CONH_2	1/2
		1/2
12	(B) CH_3NH_2	
12.	(C) CH ₃ NC	1/2
	NO ₂	
	(b) (A)	1/2
	NH ₂	
	INT2	
		1/2
	(B)	
	(C)	1/2
	0	/2
	$H - N - C - CH_3$	
	\checkmark	

12	(a) $\Delta G^0 = -nFE^0_{cell}$	1/2
13.	n= 2 ΔG^0 = - 2 x 96500 C /mol x 0.236 V = - 45548 J/mol	1/2
	= -45.548 kJ/mol	1∕₂
	(b) $Q = It = 0.5 \times 2 \times 60 \times 60$ = 3600 C	⅓2
	96500 C = 6.023×10^{23} electrons 3600 C = 2.25×10^{22} electrons	1
	 (i) Due to the resonance, the electron pair of nitrogen atom gets delocalised towards carbonyl group / resonating structures. (ii)Because of +I effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density 	1
14.	on nitrogen decreases / resonating structures. (iii)Due to protonation of aniline / formation of anilinium ion	1 1
	(a) Red phosphorous being polymeric is less reactive than white phosphorous which has discrete tetrahedral structure.	1
15	(b) They readily accept an electron to attain noble gas configuration. (c) Because of higher oxidation state(+5) of nitrogen in N_2O_5	1 1
16	 (a) Anionic detergents are sodium salts of sulphonated long chain alcohols or hydrocarbons / alkylbenzene sulphonate or detergents whose anionic part is involved in cleansing action. 	1
	(b) Narrow spectrum antibiotics- which are effective against either gram positive or gram negative bacteria.	1
	(c) Chemical compounds which are used for the treatment of excess acid produced in the stomach.	1
	(a) CH ₂ =CHCl (b)	1
17		1
	and HCHO (c)CH ₂ =CH-CH=CH ₂ , CH ₂ =CHCN	1
18.	(i) 1- Bromopentane (ii) 2-Bromopentane	1
	(iii) 2-Bromo-2-methylbutane	1

	2	303 [<i>A</i>] <i>o</i>	1/2
	t = -	$\frac{303}{k} \log \frac{[A]o}{[A]}$	/-
19.	20 min =	$\frac{2.303}{k} \log \frac{100}{75}$ - (i)	1/2
		/2	
	$t = \frac{2.30}{2}$	$\frac{100}{25} -(ii)$	
	k k		1/2
	Divide (i) equa	tion by (ii)	
	20 2 202	100	
	$\frac{20}{t} = \frac{2.303}{k}$	$log \frac{100}{75}$	1/2
		100	
	$\frac{2.303}{\nu}$	$\frac{100}{25}$	
	= log 4/		
	log 4		
		0.1250/ 0.6021	
	t= 96.3 mi		1
		(or any other correct proced	
	(a)		
	Multimolecular colloid	Associated colloid	0
20	(a) Aggregation of large	(a) Aggregation of large	1
	number of small atoms or molecules.	number of ions in concentrated solutions.	
	indiecules.	concentrated solutions.	
	(b)		
	Coagulation	Peptization	
	(a) Settling down of colloidal	(a) Conversion of precipitate	1
	particles.	into colloidal sol by	1
		adding small amount of electrolyte.	
	<u>(c)</u>		
	Homogenous catalysis	Heterogeneous catalysis	
	(a) Reactants and catalyst	(a) Reactants and catalyst	
	are in same phase.	are in different phases.	1
		OR	
20	(a) Dispersed phase-liquid D		1
20	 (a) Dispersed phase-liquid , Dispersion medium – liquid (b) Both are surface phenomenon / both increase with increase in 		÷
	surface area (or any other co		1
		^{hydrolysis} -→ Fe(OH) ₃ (sol)+3HCl	1

21.	(a) Linkage isomerism	1
	 (b) In [NiCl₄]²⁻, due to the presence of Cl⁻, a weak field ligand no pairing occurs whereas in [Ni(CN)₄]²⁻, CN⁻ is a strong field ligand and pairing takes place / diagrammatic representation (c) Because of very low CFSE which is not able to pair up the 	1
	electrons.	1
22.	(a) Benzene – molecular solid	1/2
	Silver – metallic solid (b) Size of Ag^+ ion is smaller than Na^+ ion (c) p- type	½ 1 1
23.	(i) Concerned , caring, socially alert, leadership (or any other 2 values) (ii) Starch (iii) α -Helix and β -pleated sheets (iv) Vitamin B / B ₁ / B ₂ / B ₆ / C (any two)	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
24	a) $\Delta T_f = K_f m$ Here , m = w ₂ x 1000/ M ₂ XM ₁ 273.15-269.15 = K _f x 10 x1000/ 342 x90 K _f = 12.3 K kg/mol $\Delta T_f = K_f m$ = 12.3 x 10 x1000/ 180x90 = 7.6 K T _f = 273.15 - 7.6 = 265.55 K (or any other correct method)	1 1 ½
	 b) (i) Number of moles of solute dissolved in per kilo gram of the solvent. (ii) Abnormal molar mass: If the molar mass calculated by using any of the colligative properties to be different than theoretically expected molar mass. 	1

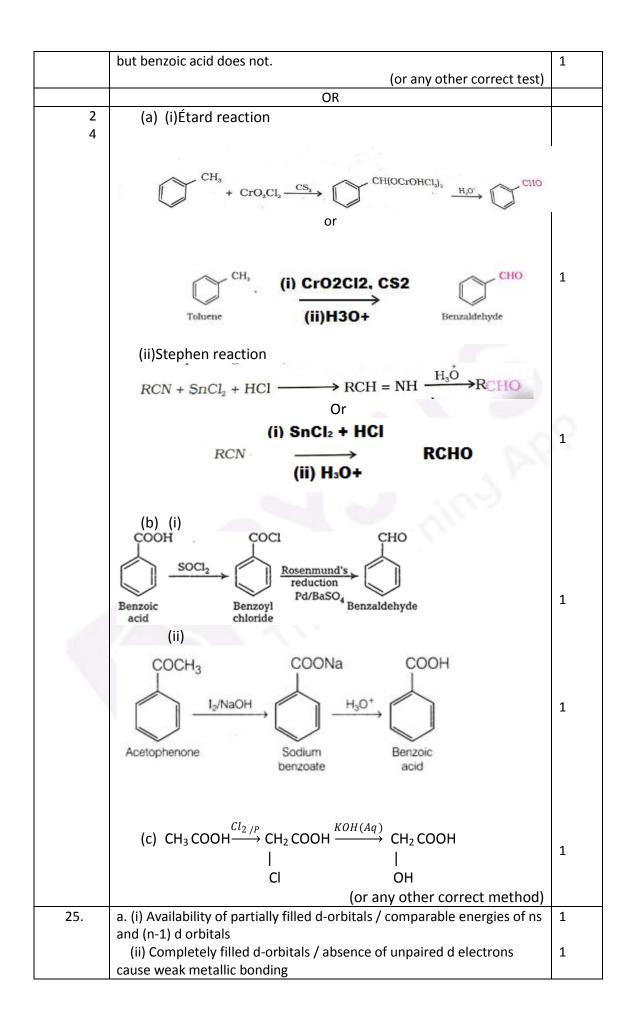
24	(a) $(P_A^0 - P_A)/P_A^0 = (w_B \times M_A)/(M_A)$	1/2	
	$\frac{23.8 - P_A}{23.8} = (30)$	1	
	23.8	1	
	$23.8 - P_A = 23.8 \times [0.15]{0}$		
		1/2	
	$23.8 - P_A =$	= 0.2532	
	$P_A = 23.55$		1
	(b)		-
		,	
	Ideal solution	Non ideal solution	
	(a) It obeys Raoult's law over	(a) Does not obey Raoult's law	
	the entire range of	over the entire range of	1+1
	concentration.	concentration.	
	(b) $\Delta_{mix} H = 0$	(b) $\Delta_{mix} H$ is not equal to	2
	(c) $\Delta_{mix} V = 0$	0.	D-Y
		(c) $\Delta_{mix} V$ is not equal to	
		0.	
		(any two correct difference)	
25	a. OH CN		1
	(i) V		
	\bigcirc		
	(ii)		1
	(iii) CH ₃ -CH=CH-CHO		1
	b. (i) Tollen's reagent test: Add ammoniae Reagent) in both the solutions. Butanal gi	-	
	one does not.		1
	 (ii) Add neutral FeCl₃ in both the solution benzoic acid does not. 		
		1	
	C		
	<u> </u>		

	(ii) Completely filled d-orbitals / absence of unpaired d electrons cause weak metallic bonding	1		
	(iii) Because Mn^{2+} has d ⁵ as a stable configuration whereas Cr^{3+} is more stable due to stable t^{3}_{2g}	1		
	 b) Similarity-both are stable in +3 oxidation state/ both show contraction/ irregular electronic configuration (or any other suitable similarity) 			
	Difference- actinoids are radioactive and lanthanoids are not / actinoids show wide range of oxidation states but lanthanoids don't (or any other correct difference)			
	OR			
26	a. (i) Cr^{3+} , half filled t^{3}_{2g}	$\frac{1}{2} + \frac{1}{2}$		
	(ii) Mn^{3+} , due to stable d ⁵ configuration in Mn^{2+}	$\frac{1}{2} + \frac{1}{2}$		
	(iii) Ti ⁴⁺ , No unpaired electrons	$\frac{1}{2} + \frac{1}{2}$		
	b. (i) $2MnO_4 + 16H^+ + 5S^2 \rightarrow 5S + 2Mn^{2+} + 8H_2O$	1		
	(ii) $2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$	1		

1	Dr. (Mrs.) Sangeeta Bhatia	12	Sh. S. Vallabhan	P.6.
2	Dr. K.N. Uppadhya	13	Dr. Bhagyabati Nayak	8
3	Prof. R.D. Shukla	14	Ms. Anila Mechur Jayachandran	
4	Sh. S.K. Munjal	15	Mrs. Deepika Arora	
5	Sh. D.A. Mishra	16	Ms. Seema Bhatnagar	
6	Sh. Rakesh Dhawan	17	Mrs. Sushma Sachdeva	
7	Dr. (Mrs.) Sunita Ramrakhiani	18	Dr. Azhar Aslam Khan	
8	Mrs. Preeti Kiran	19	Mr. Roop Narain Chauhan	
9	Ms. Neeru Sofat	20	Mr. Mukesh Kumar Kaushik	
10	Sh. Pawan Singh Meena	21	Ms. Abha Chaudhary	
11	Mrs. P. Nirupama Shankar	22	Ms. Garima Bhutani	

Marking scheme – 2017

CHEMISTRY (043)/ CLASS XII


Outside Delhi set (56/3)

Q No.	Value Points	Mark
1.		s 1
2.	a. Decreases b. No effect	1/2 1/2
3.	HIO3	1
4.	Foam ; e.g. froth, whipped cream, soap lather(any one)	1/2 + 1/2
5.	2-Methoxy-2-methylpropane	1
6.	a.	1,1
7.	Dry Cell / Leclanche cell Anode : $Zn_{(s)} \rightarrow Zn^{2+} + 2e^{-1}$ Cathode : $MnO_2 + NH_4^+ + e^{-1} \rightarrow MnO(OH) + NH_3$	1 ½ ½
8.	a. p-cresol < Phenol < p-nitrophenol $ \begin{array}{c} H \\ \hline C = C < + H \\ H \\ \hline O \\ - $	1
-	OR	
8	a. O H ₃ C CH ₃	1
		1
9.	a. $K_3[Al(C_2O_4)_3]$ b. $[C_2C_1(a_2D_4)_3]$	1
10.	b. $[\text{Co Cl}_2 (\text{en})_2]^+$ n= given mass / molar mass = 8.1 / 27 mol Number of atoms= $\frac{8.1}{27} \times 6.022 \times 10^{23}$	1 ½ ½

			1	
	Number of atoms in one unit cell= $\frac{1}{100}$			
	Number of unit cells = $\left[\frac{8.1}{27} \times 6.022\right]$	x10]/4	1/2	
	$= 4.5 \times 10^{22}$		1/2	
	Or $27a \text{ of } Al \text{ contains} = 6.022 \times 10^{23} \text{ atoms}$			
	27g of Al contains= 6.022×10^{23} atoms 8.1g of Al contains =(6.022×10^{23} / 27) x 8.1			
	No of unit cells = total no of atoms $/4$			
	$=\left[\frac{8.1}{27} \times 6.022 \times 10^{23}\right] / 4$ $=4.5 \times 10^{22}$			
	$=4.5 \times 10^{-1}$		1/2	
11.	(a) Linkage isomerism			
	_			
		resence of Cl ⁻ , a weak field ligand	1	
		as in $[Ni(CN)_4]^{2^-}$, CN^- is a strong		
	field ligand and pairing ta	akes place / diagrammatic		
	representation			
	(c) Because of very low CFSE	E which is not able to pair up the	1	
	electrons.	and the second second		
12.				
	(a)			
	Multimolecular colloid	Associated colloid	0	
	(a) Aggregation of large	(a) Aggregation of large	1	
	number of small atoms	number of ions in		
	or molecules.	concentrated solutions.		
	<u>(b)</u>			
	Coagulation	Peptization		
	(a) Settling down of	(a) Conversion of precipitate		
	colloidal particles.	into colloidal sol by	1	
		adding small amount of		
		electrolyte.		
	(c)			
	(c) Homogenous catalysis	Heterogeneous catalysis		
	(a) Reactants and catalyst	(a) Reactants and catalyst		
	are in same phase.	are in different phases.	1	
	OR			
	(a) Dispersed phase-liquid,	Dispersion medium – liquid	1	
	(b) Both are surface phenome	non / both increase with increase in		
	surface area (or any other	-	1	
1	(c) Hydrolysis / FeCl ₃ +3H ₂ O hydrolysis - \rightarrow Fe(OH) ₃ (sol)+3HCl			
			1	
13.				
13.	(a) $\Delta G^0 = -nFE_{cell}^0$		1/2	
13.	(a) $\Delta G^0 = -nFE^0_{cell}$ n= 2		1/2	
13.	n= 2	V	1/2 1/2	
13.	n= 2 ΔG ⁰ = - 2 x 96500 C /mol x 0.236	V		
13.	n= 2 ΔG ⁰ = - 2 x 96500 C /mol x 0.236 = - 45548 J/mol	v		
13.	n= 2 ΔG ⁰ = - 2 x 96500 C /mol x 0.236	V	1/2	

= 3600 C 96500 C = 6.023×10^{23} electrons 3600 C = 2.25×10^{22} electrons	
3600 C = 2.25 x 10 ²² electrons	
	4
	1
14. a. $Na_2 SO_4$: Ionic, H_2 : Molecular	$\frac{1}{2} + \frac{1}{2}$
b. Impurity defect / Schottky defect	1
c. In ferrimagnetism ,domains / magnetic moments are aligned	
in opposite direction in unequal numbers while in	1
antiferromagnetic the domains align in opposite direction in	
equal numbers so they cancel magnetic moments completel	У
, net magnetism is zero / diagrammatic explanation.	-1 4
15. a. On passing current through the electrolytic cell , the pure meta	al 1
gets deposited on the cathode.	
b. Evolution of SO ₂ gas	1
c. It selectively prevents one of the sulphide ores from coming to) 1
the froth.	
16. (a) (A) CH_3CONH_2	1/2
(B) CH_3NH_2	1/2
(C) CH ₃ NC	1/2
(b) (A)	1/2
	0
NH ₂	
	1/2
(B)	/-
(C)	1/2
$H - N - C - CH_3$	
17. (i) Due to the resonance, the electron pair of nitrogen atom gets	
delocalised towards carbonyl group / resonating structures.	1
delocalised towards carbonyl group / resonating structures.(ii) Because of +I effect in methylamine electron density at nitrogen	1
 delocalised towards carbonyl group / resonating structures. (ii) Because of +I effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron 	1
 delocalised towards carbonyl group / resonating structures. (ii) Because of +I effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. 	
 delocalised towards carbonyl group / resonating structures. (ii) Because of +I effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. (iii) Due to protonation of aniline / formation of anilinium ion 	1 1
 delocalised towards carbonyl group / resonating structures. (ii) Because of +I effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. (iii) Due to protonation of aniline / formation of anilinium ion 18. (a) Red phosphorous being polymeric is less reactive than white 	1
 delocalised towards carbonyl group / resonating structures. (ii) Because of +I effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. (iii) Due to protonation of aniline / formation of anilinium ion 18. (a) Red phosphorous being polymeric is less reactive than white phosphorous which has discrete tetrahedral structure. 	1 1 1
 delocalised towards carbonyl group / resonating structures. (ii) Because of +l effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. (iii) Due to protonation of aniline / formation of anilinium ion 18. (a) Red phosphorous being polymeric is less reactive than white phosphorous which has discrete tetrahedral structure. (b) They readily accept an electron to attain noble gas 	1 1 1 1
 delocalised towards carbonyl group / resonating structures. (ii) Because of +l effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. (iii) Due to protonation of aniline / formation of anilinium ion 18. (a) Red phosphorous being polymeric is less reactive than white phosphorous which has discrete tetrahedral structure. (b) They readily accept an electron to attain noble gas configuration. 	1 1 1
 delocalised towards carbonyl group / resonating structures. (ii) Because of +l effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. (iii) Due to protonation of aniline / formation of anilinium ion 18. (a) Red phosphorous being polymeric is less reactive than white phosphorous which has discrete tetrahedral structure. (b) They readily accept an electron to attain noble gas configuration. (c) Because of higher oxidation state(+5) of nitrogen in N₂O₅ 	1 1 1 1 1
 delocalised towards carbonyl group / resonating structures. (ii) Because of +l effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. (iii) Due to protonation of aniline / formation of anilinium ion 18. (a) Red phosphorous being polymeric is less reactive than white phosphorous which has discrete tetrahedral structure. (b) They readily accept an electron to attain noble gas configuration. (c) Because of higher oxidation state(+5) of nitrogen in N₂O₅ 19. a. Cationic detergents are quarternary ammonium salts of 	1 1 1 1
 delocalised towards carbonyl group / resonating structures. (ii) Because of +l effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. (iii) Due to protonation of aniline / formation of anilinium ion 18. (a) Red phosphorous being polymeric is less reactive than white phosphorous which has discrete tetrahedral structure. (b) They readily accept an electron to attain noble gas configuration. (c) Because of higher oxidation state(+5) of nitrogen in N₂O₅ 19. a. Cationic detergents are quarternary ammonium salts of amines with acetates, chlorides or bromides as anions / 	1 1 1 1 1
 delocalised towards carbonyl group / resonating structures. (ii) Because of +l effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. (iii) Due to protonation of aniline / formation of anilinium ion 18. (a) Red phosphorous being polymeric is less reactive than white phosphorous which has discrete tetrahedral structure. (b) They readily accept an electron to attain noble gas configuration. (c) Because of higher oxidation state(+5) of nitrogen in N₂O₅ 19. a. Cationic detergents are quarternary ammonium salts of amines with acetates, chlorides or bromides as anions / detergents whose cationic part is involved in cleansing 	1 1 1 1 1
 delocalised towards carbonyl group / resonating structures. (ii) Because of +I effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. (iii) Due to protonation of aniline / formation of anilinium ion 18. (a) Red phosphorous being polymeric is less reactive than white phosphorous which has discrete tetrahedral structure. (b) They readily accept an electron to attain noble gas configuration. (c) Because of higher oxidation state(+5) of nitrogen in N₂O₅ 19. a. Cationic detergents are quarternary ammonium salts of amines with acetates, chlorides or bromides as anions / detergents whose cationic part is involved in cleansing action. 	1 1 1 1 1
 delocalised towards carbonyl group / resonating structures. (ii) Because of +l effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. (iii) Due to protonation of aniline / formation of anilinium ion 18. (a) Red phosphorous being polymeric is less reactive than white phosphorous which has discrete tetrahedral structure. (b) They readily accept an electron to attain noble gas configuration. (c) Because of higher oxidation state(+5) of nitrogen in N₂O₅ 19. a. Cationic detergents are quarternary ammonium salts of amines with acetates, chlorides or bromides as anions / detergents whose cationic part is involved in cleansing action. b. Broad spectrum antibiotics: Antibiotics which kill or inhibit a 	1 1 1 1 1 1
 delocalised towards carbonyl group / resonating structures. (ii) Because of +l effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. (iii) Due to protonation of aniline / formation of anilinium ion 18. (a) Red phosphorous being polymeric is less reactive than white phosphorous which has discrete tetrahedral structure. (b) They readily accept an electron to attain noble gas configuration. (c) Because of higher oxidation state(+5) of nitrogen in N₂O₅ 19. a. Cationic detergents are quarternary ammonium salts of amines with acetates, chlorides or bromides as anions / detergents whose cationic part is involved in cleansing action. b. Broad spectrum antibiotics: Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria. 	1 1 1 1 1 1 1 1
 delocalised towards carbonyl group / resonating structures. (ii) Because of +l effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. (iii) Due to protonation of aniline / formation of anilinium ion 18. (a) Red phosphorous being polymeric is less reactive than white phosphorous which has discrete tetrahedral structure. (b) They readily accept an electron to attain noble gas configuration. (c) Because of higher oxidation state(+5) of nitrogen in N₂O₅ 19. a. Cationic detergents are quarternary ammonium salts of amines with acetates, chlorides or bromides as anions / detergents whose cationic part is involved in cleansing action. b. Broad spectrum antibiotics: Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria. c. Chemical compounds used for the treatment of stress and mile 	1 1 1 1 1 1 1 1
 delocalised towards carbonyl group / resonating structures. (ii) Because of +I effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. (iii) Due to protonation of aniline / formation of anilinium ion 18. (a) Red phosphorous being polymeric is less reactive than white phosphorous which has discrete tetrahedral structure. (b) They readily accept an electron to attain noble gas configuration. (c) Because of higher oxidation state(+5) of nitrogen in N₂O₅ 19. a. Cationic detergents are quarternary ammonium salts of amines with acetates, chlorides or bromides as anions / detergents whose cationic part is involved in cleansing action. b. Broad spectrum antibiotics: Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria. c. Chemical compounds used for the treatment of stress and mile or severe mental diseases. 	1 1 1 1 1 1 1 1 1 1 1
 delocalised towards carbonyl group / resonating structures. (ii) Because of +l effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. (iii) Due to protonation of aniline / formation of anilinium ion 18. (a) Red phosphorous being polymeric is less reactive than white phosphorous which has discrete tetrahedral structure. (b) They readily accept an electron to attain noble gas configuration. (c) Because of higher oxidation state(+5) of nitrogen in N₂O₅ 19. a. Cationic detergents are quarternary ammonium salts of amines with acetates, chlorides or bromides as anions / detergents whose cationic part is involved in cleansing action. b. Broad spectrum antibiotics: Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria. c. Chemical compounds used for the treatment of stress and mile 	1 1 1 1 1 1 1 1

	$H_2N \neq N NH_2$ $N \neq N$ NH_2 and HCHO	1
	b. $ \begin{array}{c} $	1
		T
21.	(i) 1- Bromopentane	1
	(ii) 2-Bromopentane	1
	(iii) 2-Bromo-2-methylbutane	1
22.	$t = \frac{2.303}{k} \log \frac{[A]o}{[A]}$	1/2
	20 min = $\frac{2.303}{k} \log \frac{100}{75}$ - (i)	1⁄2
	$t = \frac{2.303}{k} \log \frac{100}{25}$ -(ii)	1/2
	Divide (i) equation by (ii)	
	$\frac{20}{t} = \frac{2.303}{k} \log \frac{100}{75}$	1⁄2
	$\frac{2.303}{k}\log\frac{100}{25}$	
	$= \log 4/3$	
	log 4 20/t = 0.1250/0.6021	
	t = 96.3 min	1
1	(or any other correct procedure)	T
23.	(i) Concerned , caring, socially alert, leadership (or any other 2 values)	1/2 + 1/2
	(ii) Starch	1
	(iii) α -Helix and β -pleated sheets	1/2 + 1/2
	(iv) Vitamin B / B_1 / B_2 / B_6 / C (any two)	1/2 + 1/2
24.	a. OH CN	1
		1
		1
	 (iii) CH₃-CH=CH-CHO b. (i) Tollen's reagent test: Add ammoniacal solution of silver nitrate 	
	(Tollen's Reagent) in both the solutions. Butanal gives silver mirror whereas Butan-2-one does not.	1
	(ii) Add neutral FeCl ₃ in both the solutions, phenol forms violet colour	
L		1

	(iii) Because Mn^{2+} has $d^5 as a stable configuration whereas Cr^{3+}$	1
	is more stable due to stable t_{2g}^3	
	b) Similarity-both are stable in +3 oxidation state/ both show	
	contraction/ irregular electronic configuration (or any other	1
	suitable similarity)	
	Difference- actinoids are radioactive and lanthanoids are not /	
	actinoids show wide range of oxidation states but lanthanoids	1
	don't (or any other correct difference)	
	doir t (or any other correct difference)	
	OR	
	a. (i) Cr^{3+} , half filled t^{3}_{2g}	$\frac{1}{2} + \frac{1}{2}$
	(ii) Mn^{3+} , due to stable d ⁵ configuration in Mn^{2+}	1/2 + 1/2
	(iii) Ti ⁴⁺ , No unpaired electrons	$\frac{1}{2} + \frac{1}{2}$
	b. (i) $2MnO_4^- + 16H^+ +5S^2 \rightarrow 5S + 2Mn^{2+} + 8H_2O$	1
	(ii) $2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$	1
20		
26.	a) $\Delta T_f = K_f m$	1/2
	Here, $m = w_2 x \ 1000 / M_2 X M_1$	
	273.15-269.15 = K _f x 10 x1000/ 342 x90	1
	K _f = 12.3 K kg/mol	1/2
	$\Delta T_{f} = K_{f} m$	
	= 12.3 x 10 x1000/ 180x90	\odot
	= 7.6 K	
	$T_f = 273.15 - 7.6 = 265.55 \text{ K}$ (or any other correct method)	1
	b) (i) Number of moles of solute dissolved in per kilo gram of the solvent.	1
	(ii) Abnormal molar mass: If the molar mass calculated by using any of	-
	the colligative properties to be different than theoretically expected	1
		1
	molar mass_	
		1/
	(a) $(P_A^0 - P_A)/P_A^0 = (w_B \times M_A)/(M_B \times w_A)$	1/2
	$\frac{23.8 - P_A}{P_A} = (30 \times 18)/60 \times 846$	
	$\frac{23.8 - P_A}{23.8} = (30 \times 18) / 60 \times 846$	1
	$23.8 - P_A = 23.8 \times [(30 \times 18) / 60 \times 846]$	
		1/2
	$23.8 - P_A = 0.2532$	
	$P_A = 23.55 mm Hg$	1
		-

(b)			
			1.1
Ide	eal solution	Non ideal solution	1+1
	(a) It obeys Raoult's law	(a) Does not obey Raoult's	
	over the entire range of	law over the entire	
	concentration.	range of concentration.	
	(b) $\Delta_{mix} H = 0$	(b) $\Delta_{mix} H$ is not equal	
	(c) $\Delta_{mix} V = 0$	to 0.	
		(c) $\Delta_{mix} V$ is not equal	
		to 0.	
		(any two correct difference)	

1	Dr. (Mrs.) Sangeeta Bhatia	12	Sh. S. Vallabhan
2	Dr. K.N. Uppadhya	13	Dr. Bhagyabati Nayak
3	Prof. R.D. Shukla	14	Ms. Anila Mechur Jayachandran
4	Sh. S.K. Munjal	15	Mrs. Deepika Arora
5	Sh. D.A. Mishra	16	Ms. Seema Bhatnagar
6	Sh. Rakesh Dhawan	17	Mrs. Sushma Sachdeva
7	Dr. (Mrs.) Sunita Ramrakhiani	18	Dr. Azhar Aslam Khan
8	Mrs. Preeti Kiran	19	Mr. Roop Narain Chauhan
9	Ms. Neeru Sofat	20	Mr. Mukesh Kumar Kaushik
10	Sh. Pawan Singh Meena	21	Ms. Abha Chaudhary
11	Mrs. P. Nirupama Shankar	22	Ms. Garima Bhutani