CBSE Class 12 Chemistry Question Paper Solution 2018

Marking Scheme – 2017-18

CHEMISTRY (043)/ CLASS XII

<u>56/1</u>

Q.No	Value Points	Marks
1	Shows metal deficiency defect / It is a mixture of Fe ²⁺ and Fe ³⁺ /Some Fe ²⁺ ions are	1
_	replaced by Fe ³⁺ / Some of the ferrous ions get oxidised to ferric ions.	*
2	Selectivity of a catalyst	1
3	Coordination Number = 6 , Oxidation State = +2	1/2, 1/2
4	Benzyl chloride ;	1/2
7	Due to resonance, stable benzyl carbocation is formed.	1/2
5	3,3 - Dimethylpentan-2-ol	1
6	$\Delta T_f = K_f m$	-
	$= K_f \frac{w_2 \times 1000}{}$	1/2
	$M_2 \times W_1$,-
	$= 1.86 \times 60 \times 1000$	
	180x250	1/2
	= 2.48 K	1/2
	$\Delta T_f = T_f^{\circ} - T_f$	
	$2.48 = 273.15 - T_f$	
	$T_f = 270.67 \text{ K} / 270.52 \text{ K} / - 2.48 ^{\circ}\text{C}$	1/2
7	$T_f = 270.67 \text{ K} / 270.52 \text{ K} / - 2.48 ^{\circ}\text{C}$ $Rate = \frac{1}{4} \frac{\Delta (NO2)}{\Delta (t)} = -\frac{1}{2} \frac{\Delta (N_2 O_5)}{\Delta (t)}$	1/2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$\frac{1}{4} (2.8 \times 10^{-3}) = -\frac{1}{2} \frac{\Delta (N_2 O_5)}{\Delta (t)}$	1/2
	Rate of disappearance of N ₂ O ₅ (- $\frac{\Delta (N_2O_5)}{\Delta(t)}$) = 1.4 × 10 ⁻³ M/s	1
	(Deduct half mark	
	if unit is wrong or not written)	
8	(a)PH ₃	1/2
	(b)NH ₃	1/2
	(c)NH ₃	1/2
	(d)BiH ₃	1/2
9	(a)CH ₃ CHO (i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H $^{+}$ CH ₃ CH(OH)CH ₃ CrO ₃ CH ₃ COCH ₃	1
	(b)	
	CH	
	COOH KMnO ₄ -KOH	
	$\xrightarrow{\text{H},O^+}$	1
	W H ₃ O ,	
	(or any other correct method)	
	OR	
9	(a) because the carboxyl group is deactivating and the catalyst aluminium	1
	chloride (Lewis acid) gets bonded to the carboxyl group	
	(b) Nitro group is an electron withdrawing group (-I effect) so it stabilises the	1
	carboxylate anion and strengthens the acid / Due to the presence of an electron withdrawing Nitro group (-I effect).	
	Geotion withdrawing Mito group (-1 ellect).	

		I
10.	(a) 5D 2+ M O 5 OH+ M 2+ AH O 5D 3+	
10.	$5\text{Fe}^{2+} + \text{MnO}_{4} + 8\text{H}^{+} \longrightarrow \text{Mn}^{2+} + 4\text{H}_{2}\text{O} + 5\text{Fe}^{3+}$	1
		1
	(b)	
	$2MnO_4^- + H_2O + \Gamma \longrightarrow 2MnO_2 + 2OH^- + IO_3^-$	
	264 11120 11 7 262 1 2011 1103	1
	(Half mark to be deducted in each equation for not balancing)	
11	(a) As compared to other colligative properties, its magnitude is large even for	1
	very dilute solutions / macromolecules are generally not stable at higher	
	temperatures and polymers have poor solubility / pressure measurement is around the room temperature and the molarity of the solution is used	
	instead of molality.	
	(b) Because oxygen is more soluble in cold water or at low temperature.	1
	(c) Due to dissociation of KCI / KCI (aq) \rightarrow K ⁺ + CI ⁻ , i is nearly equal to 2	1
12	$d = \frac{zM}{z}$	
	$a = \frac{1}{a^3 N_A}$	1/2
	$= 4 \times 40$	1/2
	$(4x10^{-8})^3x6.022x10^{23}$	1/2
	$= 4.15 \text{ g/cm}^3$	1/2
	No of unit cells = total no of atoms /4	1/2
	$= \left[\frac{4}{40} \times 6.022 \times 10^{23}\right] / 4$ $= 1.5 \times 10^{22}$	1/2
13	(Or any other correct method)	
13	$k_2 = 0.693 / 20$,	1/2
	$k_1 = 0.693/40$	1/2
	$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$	
	$\log \frac{1}{k_1} = \frac{1}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$	1/2
	$k_2/k_1 = 2$	
	$\log 2 = \frac{E_a}{2.303 \times 8.314} \left[\frac{320 - 300}{320 \times 300} \right]$	1/2
	$2.303 \times 8.314 + 320 \times 300^{\circ}$ Ea = 27663.8 J/mol or 27.66 kJ/ mol	1
14	(a)Peptisation occurs / Colloidal solution of Fe(OH)₃ is formed	1
⊥ ⊣7	(b)Coagulation occurs	1
	(c)Demulsification or breaks into constituent liquids	1
15	$4\text{Au(s)} + 8\text{CN}^{-}(\text{aq}) + 2\text{H}_2\text{O(aq)} + \text{O}_2(\text{g}) \rightarrow$	1
	$4[Au(CN)_2]^{-}(aq) + 4OH^{-}(aq)$	
	$2[Au(CN)_2]^-(aq) + Zn(s) \rightarrow 2Au(s) + [Zn(CN)_4]^{2-}(aq)$	1
		1
	(No marks will be deducted for not balancing)	
	NaCN leaches gold/NaCN acts as a leacing agent / complexing agent	1/
	Zn acts as reducing agent / Zn displaces gold.	1/2
16		1/2
10	stable / Much larger third ionisation energy of Mn (where the required change is from	*
16	(a) The comparatively high value for Mn shows that Mn ²⁺ (d ⁵) is particularly	1

	d^5 to d^4)	
	•	
	(b)Due to higher number of unpaired electrons.	1
	(c)Absence of unpaired d- electron in Sc ³⁺ whereas in Ti ³⁺ there is one unpaired	1
	electron or Ti ³⁺ shows d-d transition.	
17		1
	(a) (i) / OH	
	(a) (i) /	
	(b)	1
	CH ₃	
		1
	(c)	1
	CH ₃	
	or	
18	(a)	
	A= CH ₃ CH ₂ CHO	1/2
	$B = CH_3COCH_2CH_3$	1/2
	C= (CH ₃) ₂ CHCHO	1/2
	D= CH ₃ CH ₂ CH ₂ CH ₃	1/2
	(b) B	1
4.5		
19.		
	(i)	
	OH 	1
		1
	(ii) C ₆ H ₅ CH(OH)CH ₃	
		1
	(iii) $C_2H_5I + C_6H_5OH$ (No splitting of marks)	_
20.	a) To impart antiseptic properties	1
20.	b) 2-3% solution of iodine in alcohol – water mixture / iodine dissolved in	
	alcohol, used as an antiseptic/ applied on wounds.	1/2,1/2
	c) Sodium benzoate / Aspartame	1
21	(a)Carbohydrates that give large number of monosaccharide units on hydrolysis /	1/2
	large number of monosaccharides units joined together by glycosidic linkage	/2
	Starch/ glycogen/ cellulose (or any other)	
	(b)Proteins that lose their biological activity / proteins in which secondary and	1/2
	tertiary structures are destroyed	1/2
	Curdling of milk (or any other)	1/2
	(c)Amino acids which cannot be synthesised in the body.	1/2
	Valine / Leucine (or any other)	1/2
	OR	
21	(a)Saccharic acid / COOH-(CHOH) ₄ -COOH	1
41	(b) Due to the presence of carboxyl and amino group in the same molecule / due to	
	formation of zwitter ion or dipolar ion.	1
	$(c)\alpha$ - helix has intramolecular hydrogen bonding while β pleated has intermolecular	
	hydrogen bonding / α- helix results due to regular coiling of polypeptide chains	1
	while in β pleated all polypeptide chains are stretched and arranged side by side.	
22	(a) Fe ₄ [Fe (CN) ₆] ₃	1
22	(a) 1 e ₄ [1 e (CIV) _{6]3} (b) Ionisation isomerism	
	(c) sp^3d^2 , 4	1
		1/2, 1/2
23	(a) Concerned about environment, caring, socially alert, law abiding citizen (or any	
	other 2 values)	1/2,1/2

	 (b) Low density polythene is highly branched while high density polythene is linear. (c) As it is non-biodegradable. (d) Which can be degraded by microorganisms, eg <i>PHBV(or any other correct example)</i> 	1 1 1 1 1/2, 1/2
24	a) (i) In +3 oxidation state of phosphorus tends to disproportionate to higher and lower oxidation states / Oxidation state of P in H ₃ PO ₃ is +3 so it undergoes disproportionation but in H ₃ PO ₄ it is +5 which is the highest oxidation state, so it cannot.	1
	 (ii) F cannot show positive oxidation state as it has highest electronegativity/ Because Fluorine cannot expand its covalency / As Fluorine is a small sized atom, it cannot pack three large sized Cl atoms around it. (iii) Oxygen has multiple bonding whereas sulphur shows catenation / Due to pπ-pπ bonding in oxygen whereas sulphur does not / Oxygen is diatomic therefore held by weak intermolecular force while sulphur is polyatomic held by strong intermolecular forces. b) (i) (ii) 	1
	F CO	1, 1
	OR	
24	a) (i) $A = NO_2$, $B = N_2O_4$ (ii)	1/2, 1/2
	$N \longrightarrow N \longrightarrow$	1/2 , 1/2
	(iii) Because NO ₂ dimerises to N ₂ O ₄ / NO ₂ is an odd electron species.	1
	b) HI > HBr > HCl > HF	1
	c) $XeF_4 + SbF_5 \rightarrow [XeF_3]^+ [SbF_6]^-$ (a) $Sn + 2 H^+ \rightarrow Sn^{2+} + H_2$ (Equation must be balanced)	1
25	(a) Sn + 2 H ⁺ → Sn ²⁺ + H ₂ (Equation must be balanced)	1
	$E = E^{\circ} - \frac{0.059}{2} \log \frac{[Sn^{2+}]}{[H^{+}]^{2}}$	1/2
	$= [0 - (-0.14)] - 0.0295 \log \frac{(0.004)}{(0.02)^2}$	1/2
	= 0.14 - 0.0295 log 10 = 0.11 V / 0.1105 V	1
	(b) (i) Due to overpotential/ Overvoltage of O ₂ (ii) The number of ions per unit volume decreases.	1
	OR	
25	a) $\Delta G^{\circ} = - \text{ nFE}^{\circ}$ -43600 = - 2 × 96500 × E°	1/2
	$E^{\circ} = 0.226 \text{ V}$	1/2
	$E = E^{\circ} - 0.059/2 \log ([H^{+}]^{2} [C\Gamma]^{2} / [H_{2}])$ = 0.226 - 0.059/2 \log[(0.1)^{2} \times (0.1)^{2}] / 1	1/2
	$= 0.226 - 0.059/2 \log[(0.1)^{2} \times (0.1)^{2}] / 1$ $= 0.226 - 0.059 / 2 \log 10^{-4}$	1/2
		1

b) Cells that convert the energy of combustion of fuels (like hydrogen, methane, methanol, etc.) directly into electrical energy are called fuel cells. Advantages: High efficiency, non polluting (or any other suitable advantage) 26 (a)(i) Ar/ R-CONH₂ + Br₂ + 4 NaOH → Ar/ R-NH₂ + 2NaBr + Na₂CO₃ + 2 H₂O (ii) C₀H₅NH₂ + NaNO₂ + 2HCl → 273-278K → C₀H₅ N₂ Cl+ NaCl + 2H₂O (or any other correct equation) (iii) (iii) (b)(i)Because of the combined factors of inductive effect and solvation or bydration effect	1/2
methanol, etc.) directly into electrical energy are called fuel cells. Advantages: High efficiency, non polluting (or any other suitable advantage) 26 (a)(i) Ar/ R-CONH₂ + Br₂ + 4 NaOH → Ar/ R-NH₂ + 2NaBr + Na₂CO₃ + 2 H₂O (ii) C₀H₃NH₂ + NaNO₂ + 2HCl → 273-278K → C₀H₃ N₂ Cl+ NaCl + 2H₂O (or any other correct equation) (iii) (iii) N-R NaOH(aq) → NK R-X → NH₂ (b)(i)Because of the combined factors of inductive effect and solvation or	./2
Advantages: High efficiency, non polluting (or any other suitable advantage) 26 (a)(i) Ar/ R-CONH ₂ + Br ₂ + 4 NaOH \rightarrow Ar/ R-NH ₂ + 2NaBr + Na ₂ CO ₃ + 2 H ₂ O (ii) $C_6H_5NH_2 + NaNO_2 + 2HCl \xrightarrow{273-278K} C_6H_5 \stackrel{\sim}{N_2} \stackrel{\sim}{C}l + NaCl + 2H_2O$ (or any other correct equation) (iii) $C_6H_5NH_2 + NaNO_2 + 2HCl \xrightarrow{273-278K} C_6H_5 \stackrel{\sim}{N_2} \stackrel{\sim}{C}l + NaCl + 2H_2O$ (or any other correct equation)	,1/2
$(a)(i) \text{ Ar/ R-CONH}_2 + \text{Br}_2 + 4 \text{ NaOH} \rightarrow \text{Ar/ R-NH}_2 + 2 \text{NaBr} + \text{Na}_2 \text{CO}_3 + 2 \text{H}_2 \text{O} $ (ii) $C_6 \text{H}_5 \text{NH}_2 + \text{NaNO}_2 + 2 \text{HCl} \xrightarrow{273-278 \text{K}} C_6 \text{H}_5 \overset{\circ}{\text{N}}_2 \overset{\circ}{\text{Cl}} + \text{NaCl} + 2 \text{H}_2 \text{O} $ (or any other correct equation) (iii) (iii) 0 0 0 0 0 0 0 0 0 0	
(or any other correct equation) (iii) $N-R$ $N-$	
(iii) $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(b)(i)Because of the combined factors of inductive effect and solvation or	
(b)(i)Because of the combined factors of inductive effect and solvation or	
hydration effect 1	
(ii)Due to resonance stabilisation or structural representation / resonating	
structures.	
OR	
26 (a) (i) C ₆ H ₅ NHCOCH ₃ 1	
(ii) $C_6H_5SO_2N(CH_3)_2$	
(iii) C ₆ H ₆	
(b) Add chloroform in the presence of KOH and heat , Aniline gives a offensive smell while N,N dimethylaniline does not. (or any other correct test) (c) $C_2H_5NH_2 < C_6H_5NH_2$	
1	