CBSE Class 12 Chemistry Question Paper Solution 2019

Marking scheme – 2019 CHEMISTRY (043)/ CLASS XII DELHI 2019 56/4/1

	56/4/1	
Q. No.	VALUE POINTS	MARKS
1	Schottky defect / Vacancy defect	1
2	$[Cr (H_2O)_5Cl]Cl_2. H_2O / [Cr (H_2O)_5Cl]Cl_2$	1
	OR	
	Double salt dissociates in simple ions completely when dissolved in water while Complex salt does not .	1
3	Substances which at low concentrations behave as normal strong electrolytes, but at higher concentrations exhibit colloidal behavior due to the formation of aggregates / Micelles. Example: Soap solutions / any other suitable example	1/2 + 1/2
4	Due to higher stability of 3 ⁰ / tertiary carbocation	1
5	$R - C - NH_2 + Br_2 + 4NaOH \longrightarrow R - NH_2 + Na_2CO_3 + 2NaBr + 2H_2O$	1
	OR	
	Propanamine has intermolecular hydrogen bonding whereas N,N-dimethylmethanamine has no intermolecular hydrogen bonding.	1
6	 (a) Solubility of gases (O₂) increases with decrease in temperature / Solubility of gases (O₂) is inversely proportional to temperature / Decrease in temperature decreases K_H and increases solubility of gases (O₂). 	1
	(b) Due to the lower partial pressure of oxygen / Due to low concentrations of oxygen in the blood.	1
	OR	
	Maximum boiling azeotrope Hydrogen bonding between acetone and chloroform / Stronger solute – solvent interaction / Negative deviation from Raoult's law.	1 1
7		1
	volume Λ m increases.	
8	Nitrate ion / NO_3^{-1} [Fe (H ₂ O) ₅ (NO)] ²⁺	1
	OR	
	$MnO_2 + 4HCI \rightarrow MnCl_2 + Cl_2 + 2H_2O /$ $2KMnO_4 + 16HCI \rightarrow 2KCI + 2MnCl_2 + 8H_2O + 5Cl_2 /$	1
	$CuCl2$ $4HCl +O2 \longrightarrow Cl2 + 2H2O$	

	L 01 20101	
	$H_2 + Cl_2 \rightarrow 2HCl$ $H_2S + Cl_2 \rightarrow 2HCl + S$ $C_{10}H_{16} + 8Cl_2 \rightarrow 16HCl + 10C$ (OR ANY OTHER CORRECT REACTION.)	1
9	(a) Cr^{2+} , due to lower standard reduction potential (E^0) / Higher standard oxidation potential.	1/2 +1/2
	(b) Mn ²⁺ , Due to highest negative standard reduction potential.	1/2 +1/2
10	(a) On treating phenol with chloroform in the presence of sodium hydroxide, a –CHO group is introduced at <i>ortho</i> position of benzene ring.	1/2
	OH CHCl ₃ + aq NaOH CHCl ₂ NaOH CHCl ₂ NaOH CHCl ₃ NaOH CHO H CHO Salicylaldehyde OR	1 / ₂
	CHCl ₃ + aq NaOH CHO H CHO Salicylaldehyde	
	(b) An alkyl halide is allowed to react with sodium alkoxide to form ether.	1/2
	R-X+R'-ONa R-O-R'+Na X (or any other specified equation) (Note: Full marks to be awarded if only equation is given)	1/2
11	(a)	1
	NH ₂ (CH ₂) ₆ NH ₂ and HOOC (CH ₂) ₄ COOH	
	(b)	
	$CH = CH_2$	
	$CH_2 = CH - CH = CH_2$ and	
	~	1
12	(a) Addition polymer; formed by addition of monomers / unsaturated monomeric units (b) Condensation polymer; formed by condensation of bifunctional monomers with elimination of	1/2+1/2
	water molecules	1/2+1/2
13	$d = \frac{z.M}{a^3.N_A}$	1/2
	for bcc z=2	1/2
	2x52 g mol ⁻¹	1
	(300 x 10^{-10} cm) ³ x $(6.022 \times 10^{23} \text{mol}^{-1})$	
	= 6.39 g cm ⁻³	1
	(Half mark to be deducted for incorrect or no units) (Or any other correct method)	
14	π = CRT	1/2
	4.98 = (30/180/1) x RT	

	4.98= 0.166 RT (i)	1/2
	1.52 = CRT(ii)	1/2
	Divide eq. (ii) by (i)	/2
	, ,	1/
	0.305= C/0.166 C = 0.0506 mol l ⁻¹	1/2
		1/2
	(Or any other correct method)	
15	$E_{cell}^0 = E_{cathode} - E_{anode}$	1/2
	= -0.403 - (-0.763) = 0.360 V	
	$\Delta_{\rm r} {\sf G}^0 = {\sf -nFE}^0_{\rm cell}$	1/2
	$= -2x 96500 \times 0.360$	1/2
	= - 69480 J mol-1 or -69.480 kJ mol ⁻¹	1/2
	$\log K_c = nE_{cell}^0 / 0.059$	1/2
	$= 2 \times 0.360 / 0.059$	
	log Kc= 12.20	1/2
	OR	
	6 x 96500 C deposit 1 mole Cr = 52 g	1/2
	24000 C will deposit 52 x 24000 / 6 x 96500 = 2.155 g	1/2
	52 g of Cr deposited by 6 x 96500 C	1/2
	1.5 g Cr deposited by 6 x 96500 x 1.5 / 52= 16701.9 C	1/2
	$Q=I \times t$	1/2
	t = Q/I = 16701.9 C / 12.5 A= 1336 s	1/2
	(Or any other correct method)	/2
16	(a) Mutual coagulation / coagulation / cancellation of charges	1
10	(b) Due to coagulating property of FeCl ₃ for blood to form clots.	1
	(c) Due to saturation / $\log x/m = K p^{-1/n}$	1
	When $1/n=0$, $x/m=$ constant, the adsorption is independent of pressure.	1
17	(a) To prevent one of the sulphide ore from coming to the froth.	1
1/		
	(b) For refining of Ni / To form volatile complex with Ni which decomposes on further heating/	1
	Heat Ni + 4CO→ Ni(CO) ₄	
	111 + 4CO	
	Llook	
	Heat Ni(CO)₄Ni + 4CO	
	(c) To separate (remove) impurities by forming soluble sodium aluminate /	
	Al ₂ O ₃ (s) + 2NaOH(aq) + 3H ₂ O(I) \rightarrow 2Na[Al(OH) ₄](aq)	
		1
	OR	
	1) $Al_2O_3(s) + 2NaOH(aq) + 3H_2O(l) \rightarrow 2Na[Al(OH)_4](aq)$	1
	2) $2Na[Al(OH)_4](aq) + CO_2(g) \rightarrow Al_2O_3.xH_2O(s) + 2NaHCO_3(aq)$	1/2
	3) $.Al_2O_3.xH_2O(s) Al_2O_3(s) + xH_2O(g)$	1/2
	4) $2Al_2O_3 + 3C \rightarrow 4Al + 3CO_2$ or 4) Cathodo A^{13+} (malt) + $3a^{-1}$ + $A^{1/4}$)	1
	4) Cathode: A^{3+} (melt) + $3e^{-} \rightarrow Al(l)$	
	Anode: $C(s) + O^{2-} \rightarrow CO(g) + 2e^{-}$ (Balancing may be ignored)	
18	Fusion of chromite ore (FeCr ₂ O ₄) with sodium or potassium carbonate in free access of air to	1
	form sodium chromate	
	4 FeCr ₂ O ₄ + 8 Na ₂ CO ₃ + 7 O ₂ \rightarrow 8 Na ₂ CrO ₄ + 2 Fe ₂ O ₃ + 8 CO ₂	
	On acidification of Sodium chromate with sulphuric acid to form sodium dichromate	1
	2Na ₂ CrO ₄ + 2 H ⁺ \rightarrow Na ₂ Cr ₂ O ₇ + 2 Na ⁺ + H ₂ O	
	(Full marks may be awarded for writing correct equations only. Balancing may be ignored)	
	Cr ₂ O ₇ ²⁻ + 14 H ⁺ + 6 Fe ²⁺ \rightarrow 2 Cr ³⁺ + 6 Fe ³⁺ + 7 H ₂ O	1
	$Cr_2O_7 + 14 H + 6 Fe \rightarrow 2 Cr + 6 Fe + 7 H_2O$ OR	
	UK	

	(a) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$	1
	(b) $10l^{-} + 2MnO_{4}^{-} + 16H^{+} \rightarrow 2Mn^{2+} + 8H_{2}O + 5 l_{2}$	1
	(c) $Cr_2O_7^{2-}$ + 14 H^+ + 3 Sn^{2+} \rightarrow 2 Cr^{3+} + 3 Sn^{4+} + 7 H_2O	1
	(Balancing may be ignored)	
19	(i) sp ³ d ² , paramagnetic	1 + ½
	(ii) dsp ² , diamagnetic	1+1/2
20	(a) -NO ₂ is an electron withdrawing group / It stabilises carbanion through resonance./ Diagrammatic representation	1
	(b) Due to symmetry / It fits better in crystal lattice.	1
	(c) Due to formation of gaseous byproducts / The two gaseous products are escapable.	1
	OR	
	Druggestane	
	Dry acetone	
	 (a) CH₃CH₂CH₂CH₂-CI + NaI	1
	elimination / Gives more stable product according to Saytzeff Rule.	1
	(c) 4-Bromo-4-methylpent-2- ene.	1
21	(a)	1 1
21		*
	$CH_3 C (CH_3) = CH CH_3 \xrightarrow{H_2O, H^+} CH_3 C (CH_3) (OH) CH_2 CH_3$	
	$CH_2=C(CH_3)CH_2CH_3 \xrightarrow{H_2O, H^+} CH_3 C(CH_3)(OH)CH_2CH_3$	
	(b) Mechanism Step 1:	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Й Й H H	1
	Step 2:	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
	Step 3:	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
22	(a) (i) CH ₃ NH ₂ with Hinsberg's Reagent (Benzene Sulphonyl Chloride) forms a precipitate which is soluble in base.	1
	(CH ₃) ₂ NH with Hinsberg's Reagent (Benzene Sulphonyl Chloride) forms a precipitate which is insoluble in base. (Or any other suitable chemical test)	

	(ii)Add benzene diazoniumchloride to both the compounds, aniline forms yellow dye while ethanamine does not. (Or any other suitable chemical test)	1
	(b) Due to salt formation between Aniline and anhydrous AlCl ₃ . / Aniline behave as lewis base and anhydrous AlCl ₃ behaves as lewis acid. / Nitrogen of aniline acquires positive charge which acts as a strong deactivating group.	1
23	 (a) Glucose does not give Schiff's test / does not form the hydrogensulphite addition product / Pentaacetate of glucose does not react with hydroxylamine/ Glucose is found to exist in two anomeric forms. (b) Amylose is a long unbranched chain with α-glucose units / Glycosidic linkage between 	1
	C-1 & C-4 Amylopectin is a branched chain polymer of α -D-glucose Units / Chain is formed by C1–C4 glycosidic linkage whereas branching occurs by C1–C6 glycosidic linkage.	1
	Note: As per the language of question paper "Amylase" a protein / enzyme, a polymer of α – amino acid.	
	(c) Due to presence of both, acidic (-COOH) and basic (-NH ₂) groups / It reacts with both, acids and bases / Exists as Zwitter ion / Correct structure of zwitter ion.	1
24	(a) Antiseptics are chemicals which either kill or prevent the growth of micro-organisms applied to the living tissues such as wounds, cuts. Examples- Soframicine.	1/2 + 1/2
	(b) Drugs which relieve pain without causing addiction. Examples - Aspirin.(c) Cationic detergents are quarternary ammonium salts of amines with acetates, chlorides	1/2 + 1/2
	or bromides as anions/ Cationic part possess a long hydrocarbon chain and a positive charge on Nitrogen atom / Cationic part is involved in cleansing action. Example: Cetyltrimethyl ammonium bromide	1/2 + 1/2
	(Or any other correct example.)	
25	(a) (i) Zero order	1
	(ii) – k (b)	1
	$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$	1
	$\log 4 = \left(\frac{E_{\text{a}}}{2.303 \times 8.314 \text{J} K^{-1} \text{mol}^{-1}}\right) \left[\frac{313 - 293}{313 \times 293}\right]$	1
	$0.602 = E_a \times 20 / 19.147 \times 9\dot{1}709$	1
	$E_{\rm a}^{}$ = 52862 J mol ⁻¹ = 52.862 kJ mol ⁻¹	
	(Deduct ½ mark if incorrect or no unit is given)	
	OR	

	(a)	1
	Intercept = $\ln A$	
		1
	ln k	
	0 1/T →	1
	(b) $k = (2.303/t) \log [R]_0 / [R]$ = $(2.303 / 30 min) \log 100/80$	1/2
	$= 0.0074 \text{min}^{-1} \text{or} 0.007 \text{min}^{-1}$	1/2
	$t \frac{1}{2} = 0.693 \text{ /k}$	1/2
		1/2
	= 0.693 / 0.0074 = 93.6 min or 99 min OR	,-
	$t_{1/2} = (2.303 \times 0.3010 \times 30) / (2.303 \times 0.0969)$	
	$= 93.16 \min / 93.18 \min$	
26	(a) (i) (ii)	1+1
	(H)	
	I • • •	
	CC S S	
	он он но	
	 (b) (i) Above 1000 K, Sulphur exist as S₂ molecule which has two unpaired electrons. (ii) It is due to low enthalpy of dissociation of F-F bond and high hydration enthalpy of F⁻ 	1
	ion.	1
	(iii) Exists as [PCl ₄] ⁺ [PCl ₆] ⁻	
		1
26	OR	
	(a) (i) PbS(s) + $4O_3(g) \rightarrow PbSO_4(s) + 4O_2(g)$	1
	(ii) XeF ₆ + NaF → Na ⁺ [XeF ₇] ⁻	1
	(b) (i) DII - Agil - Alii - Chii - Diii - Agil - Chii - Diii -	
	(b) (i) PH ₃ < AsH ₃ < NH ₃ < SbH ₃ < BiH ₃ ; NH ₃ = molecular associated with intermolecular H banding while other	1/2 + 1/2
	NH ₃ molecules associated with intermolecular H-bonding while other	
	hydrides are associated with Van der Waals forces which depends on size.	
	(ii) HF < HCl < HBr < HI ; Down the group bond dissociation enthalpy	1/ . 1/
	decreases / Size increases.	1/2 + 1/2
	400.04000 / Ol20 IIIO.04000.	
	(iii) $H_2O < H_2S < H_2Se < H_2Te < H_2Po$, Down the group bond dissociation	1/2 + 1/2
	enthalpy decreases / Size increases.	

