MARKING SCHEME- 2019

CHEMISTRY (043) CLASS XII

56/5/1

Q.No.	Expected answers/ Value points	Marks
	SECTION A	
1	A ₃ B ₂	1
2	$As_2O_3 + 3H_2S \rightarrow As_2S_3(sol) + 3H_2O / By Double decomposition of Arsenic oxide with Hydrogen sulphide$	1
2	Fe(s)	1
2	$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$ or any other suitable example.	L L
3	Steric reason / Electronic reason/ Inductive effect	1
4	Mixture of amines including quaternary ammonium salts $/ RNH_2, R_2NH, R_3N, R_4N^+X^-$	1
5	Ionization isomerism	1
	OR	1.5
5	$[Cr(Cl)_6]^{3-} < [Cr(NH_3)_6]^{3+} < [Cr(CN)_6]^{3-}$	1
	SECTION B	
6	At cathode- $H_2(g)$ is produced due to greater E° value of H^{+} ion	1
	At anode- Cl_2 (g) is produced due to over voltage /over potential of oxygen	1
7	t=(2.303/k)log[R] _o /[R]	1/2
	Let [R] _o =100	
	For 99% completion reaction-	
	$t_{99\%} = (2.303/k) \log (100/1)$	
	K=(2.303 X 2)/l _{99%}	1/
	For 90% completion	/2
	$t_{rev} = (2.303/k) \log (100/10)$	
	Putting the value of k	1/2
	$t_{00\%} = (2.303 \times t_{00\%} \times \log 10)/2.303 \times 2$	/-
	$2xt_{90\%} = t_{99\%}$	1/2
	(Or any other suitable method)	
8	$H_2S < H_2Se < H_2Te < H_2O$	1
	From H_2S to H_2Te boiling point increases as magnitude of van der Waal force	1/2
	increases. The boiling point of water is maximum due to H-bonding	
	H ₂ O / water	1/2

9	1. When pyrolusite is fused with KOH	in presence of air or oxidizing agent ,	1
	potassium manganate is produced .		
	$2MnO_2 + 4KOH + O_2 \rightarrow 2I$	$K_2MnO_4 + 2H_2O$	
	2. Potassium manganate upon furthe	r oxidation or disproportionation in a	
	neutral or acidic medium gives potass	Sium permanganate.	1
	$3MnO_4{}^{2^-} + 4H^* \rightarrow 2MnO_4{}^- + MnO_2 + 2H_2O_{-}$	MnO_4^{2-} $\xrightarrow{alkaline solution} MnO_4^{-}$	T
	(Award full ma	rks if only correct reactions are given)	
10			
		COOH	14
	СПО СНО		^y ₂ ×4
	A= B= C=	D=	
	(Full marks may be aw		
	O	DR	
10	a)		1
	OH	200	
	Zn dust CH,	Cl, Anhyd. AlCla, CH,	
		-	
		~	~ OX
	b) PCC		1
	CH ₃ CH ₂ OH> CH ₃ CH		
	Δ		
		(Or any other suitable method)	
11	a) n-hexane is formed		
	CHO HI A OU OU		1
	$(CHOH)_4 \xrightarrow{HI_1 \ \Delta} CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$		T
	CH ₂ OH		
	b) Saccharic acid is formed		
	СНО СООН		
	$(CHOH)_4 \xrightarrow{Oxidation} (CHOH)_4$		1
	CH ₂ OH COOH		
	(Award fu		
11			
	Fibrous	Globular	
	i)The polypeptide chains run	The polypeptide chains coil around	
	parallel and are held together by	to give a spherical shape.	1+1
	hydrogen and disulphide bonds.		
	II)Insoluble in water	Soluble in water	
12		(Ur any other correct difference)	1+1
12	i)Deovyribose sugar	Ribose sugar	171
	ii)contain bases ATGC	Contain bases AUGC	
	,		

	(Or any other correct difference)	
	SECTION C	
13	a)Ferromagnetism b) let the number of O ²⁻ ions be 100 then total number of Ni2 ⁺ = 98 Let the number of Ni ²⁺ =x	1
	Then number of Ni ³⁺ =0.98-x Total chrge of cation = Total charge of anion 2 x +3(0.98-x)=2 x = 0.94 Fraction of Ni ²⁺ = 0.94/0.98= 0.96	1 ½ ½
	Fraction of $Ni^{3+}=1 - 0.96 = 0.04$	
14	$n=6$ $E^{o} = E^{o}_{cathode} - E^{o}_{anode}$ $= (-0.25) - (-1.66)$ $= 1.41 V$ $E_{cell} = E^{o}_{cell^{-}} (0.059/n) \log [Al^{+3}]^{2} / [Ni^{+2}]^{3}$ $E_{cell} = 1.41 - (0.059/6) \log (10^{-3})^{2} / (0.1)^{3}$ $E_{cell} = 1.4395 V$	1 1 1 1 2
15	For experiment II [A] =0.2 mol ⁻¹ For Experiment III Rate = 0.08 mol L^{-1} min ⁻¹ For Experiment IV [A] = 0.1 mol L^{-1}	1 1 1
16	a) Negative sol is formed Due to adsorption of I ⁻ from dispersion medium b) x/m t As extent of adsorption decreases with increase in temperature c) 'A'; With higher critical temperature, it will liquify more easily	$y'_2 + y'_2$ $y'_2 + y'_2$ $y'_2 + y'_2$
17	 a) The ore particles are wetted with oil, while gangue particles are wetted by water / Preferential wettability b) The impurities are more soluble in the melt than in the solid state of metal c) The metal forms a volatile compound with a suitable reagent. The volatile compound is easily decomposed on heating. 	1 1 1
	OR	
17	 a) Cast iron contain 3% carbon while pig iron contain 4% carbon b) Hydraulic washing is the method of concentration of an ore while liquation is the method of refining of metal (or any other suitable diffrence) 	1
	method used to convert a sulphide ore to oxide	↓

	(or any other suitable difference)	
18	a) At + 3, Stable d ^o is obtained	1
	b) Absence of unpaired electron / no d-d transition occurs	1
	c) MnO has Mn in +2 Oxidation State	
	Mn ₂ O ₇ has Mn in +7 Oxidation State . Higher the Oxidation State , Higher	1
	is the acidic character.	
	OR	
18	a) 4f ¹⁻¹⁴ 5d ⁰⁻¹ 6s ²	1
	b) +3and +4	1
	c) 5f 6d 7s orbitals/levels are of comparable energies	1
19	a) d ² sp ³ , diamagnetic	1 + 1/2
	b) sp ³ , diamagnetic	1 + ½
20	a) The stereoisomers related to each other as non superimposable mirror	1
	images are called enantiomers.	
	b) Equimolar mixture of d- and l- form is known as racemic mixture	1
	c) Resonance effect / difference in hybridisation of carbon atom in $C - X$	1
	bond / instability of phenyl cation /partial double bond character	
21	a) Add neutral FeCl ₃ to both the compounds. Phenol gives violet	1
	colouration while, 1 – propanol does not.	
	b) Add I ₂ / NaOH(aq) to both the compounds, Ethanol gives yellow	1
	precipitate while ether does not	S
	c) Add HCl and ZnCl ₂ to both the compounds, 2-methyl-2-propanol gives	
	turbidity immediately while 1-propanol does not	1
	(Or any other suitable chemical test)	
	OR	
21	a) CH_3 - CH_2OH + CH_3I	1
	b)	
	ОН ОН ОН	
	Br. in CS. Br	
	→ <u>H1 m (32</u> 273 K +	1
	× × Y	
	c)	
	OCH, OCH, OCH,	
	COCH A	1
	+ CH.COCI Anhyd. AlCl _a	
	COCH	
22	a) Due to resonance stabilisation of arene diazonium ion /	1 + ½
	N = N: $N = N$:	
	Ŭ,	
	b) Methyl amine being basic, gains a proton from water and releases	
	hydroxyl ions which precipitate hydrated ferric oxide.	1 + 1/2

	CH ₃ NH ₂ $\xrightarrow{\text{H}_2\text{O}}$ CH ₃ NH ₃ ⁺ + OH ⁻	
	FeCl ₃ ^{3OH} → Fe(OH) ₃ + 3Cl	
	OR	
22	a) p-nitroaniline > aniline > p-toluidine	1
	pK_b decreases, basicity increases / due to inductive effect / EWG – NO ₂ and	1/2
	EDG –CH₃ group	
	b) $C_2H_5NH_2 > (C_2H_5)_2NH > (C_2H_5)_3N$	1
	Due to increase in number of ethyl groups, inductive effect increases	1/2
23	a) Homopolymer as it is formed only from one monomer.	$\frac{1}{2} + \frac{1}{2}$
	b) Addition polymer as it is formed by addition of monomeric units.	$\frac{1}{2} + \frac{1}{2}$
	c) Bakelite is a thermosetting plastic due to extensive crosslinking.	$\frac{1}{2} + \frac{1}{2}$
24	a) 2-3% solution of iodine in alcohol – water mixture	1/2
	It is an antiseptic / is applied on wounds	1/2
	b) Chloroxylenol and terpineol	1
	c) $CH_3(CH_2)_6$ - Hydrophobic ; -COO(CH_2CH_2O) _n CH_2CH_2OH - Hydrophilic	$\frac{1}{2} + \frac{1}{2}$
	SECTION D	0
25	a)	~ OY
	Bolling point of	2.2
	Solvent Solution	
	1.013 bar or 1 Atm	1+1
	$ \begin{array}{c} & & \\ & & $	
	When a solute is added to a solvent, the vapour pressure of the solvent	
	decreases and it becomes equal to atmospheric pressure at a higher	
	temperature.	
	b) i = 3	1/2
	π = i CRT	1/2
	$\pi = 3 \times 0.025 \times 0.0821 \times 298/174 \times 2000$	1
	$\pi = 5.27 \times 10^{-3}$ atm.	1
	(Deduct half mark if unit is not given or wrong)	
	OR	
25	a) Solution does not obey Raoult's law over the entire range of	1+1
	concentration, $\Delta H_{mix} \neq 0$ (or any two suitable characteristics)	
	b) n = 2 (dimer)	
	$\Delta T_{\rm f} = {\rm i} \ {\rm K_{\rm f}} {\rm m}$	1/2
	i=1.62 x 122 x 25/4.9 x 2 x 1000	1/2
	i= 0.504	1/2
	$\alpha = 2(1-i)$	1/2
	$\alpha = 2(1 - 0.504)$	1/2

	= 0.992	
	= 99.2%	1/2
	(Or any other suitable method)	
26	a) Due to the presence of an unpaired / unbonded / odd electron on nitrogen atom	1
	h) Bleaching effect of chlorine is due to ovidation / ovidation is caused by	
	nascent oxygen released by reaction of Cl_2 and $H_2O /$	
	$Cl_2 + H_2O \rightarrow 2HCl + [O]$	
	Coloured substance + [O] \rightarrow colourless substance	1
	c) Due to small size of oxygen, the added electron suffers inter electronic	1
	repulsion.	
	d) Unavailability of d-orbital in Fluorine / Due to high electronegativity and	1
	small size.	1
	e) Due to weak dispersion forces.	
	OR	
26	F CI	$\frac{1}{2} + \frac{1}{2}$
	F	$y'_{2} + y'_{2}$
	CI CI	
		2.2
	a) i) See – saw ^F ii) Bent T Cl	V
	b) i) It forms chloride and chlorate.	1/ . 1/
	6 NaOH + 3 Cl ₂ → 5 NaCl + NaClO ₃ + 3H ₂ O	$\frac{1}{2} + \frac{1}{2}$
	ii) On complete hydrolysis XeO ₃ is formed.	1/4 + 1/4
	$XeF_6 + 3 H_2O \rightarrow XeO_3 + 6 HF$	/2 1 /2
	iii) Charring of cane sugar takes place.	$\frac{1}{2} + \frac{1}{2}$
	$C_{12}H_{22}O_{11} + H_2SO_4 \rightarrow 12 C + 11H_2O$	
	(Balancing may be ignored)	
27	a) But-2-enal	1
	b) To both the compounds add Tollen's reagent, ethanal gives sliver mirror	1
	tost)	
	c) i)	1
		1
	$ \begin{array}{c} & \xrightarrow{\text{KMnO}_4 - \text{KOH}} \\ & \xrightarrow{\text{Heat}} \end{array} \xrightarrow{\text{COOR}} \xrightarrow{\text{H}_3\text{O}^*} \end{array} \begin{array}{c} & \xrightarrow{\text{COOR}} \end{array} $	
	ii)	1
	CH ₃ CH ₂ OH $\xrightarrow{\text{PCC}, \text{Heat}}$ CH ₃ CHO $\xrightarrow{\text{i)CH_3MgBr}}$ CH ₃ CH(OH)CH ₃	
	iii)	
	СН3-СН2-СНО кмпо4 СН3 - СН2 - СООН (1) Cl2 / Р4 СН3-СН-СООН	1
	H ⁺ (2)NaOH (aq) OH	
	OR	
27	a) 2-Hydroxy benzoic acid	1

b) Due to Inductive effect of Cl ⁻ / presence of EWG(Cl ⁻)	1
c) i) (CH ₃) ₃ C-CH ₃	1
ii) (CH ₃) ₃ C-CH ₂ OH and (CH ₃) ₃ C-COONa	1
iii) (CH ₃) ₃ C-CH=NNHCONH ₂	1

