QUESTION PAPER CODE 65/1

EXPECTED ANSWER/VALUE POINTS

SECTION A

1. $|\mathrm{A}|=8$.
2. $\mathrm{k}=12$.
3. $-\log |\sin 2 \mathrm{x}|+\mathrm{c}$ OR $\log |\sec \mathrm{x}|-\log |\sin \mathrm{x}|+\mathrm{c}$.
4. Writing the equations as $2 x-y+2 z=5\}$

$$
\left.\begin{array}{ll}
& 2 \mathrm{x}-\mathrm{y}+2 \mathrm{z}=8
\end{array}\right\}, \begin{aligned}
& \text { Distance }=1 \text { unit }
\end{aligned}
$$

SECTION B

5. Any skew symmetric matrix of order 3 is $A=\left[\begin{array}{rrr}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right]$ $\Rightarrow \quad|\mathrm{A}|=-\mathrm{a}(\mathrm{bc})+\mathrm{a}(\mathrm{bc})=0$

OR

Since A is a skew-symmetric matrix $\quad \therefore A^{T}=-A$
$\therefore \quad\left|\mathrm{A}^{\mathrm{T}}\right|=|-\mathrm{A}|=(-1)^{3} .|\mathrm{A}|$
$\Rightarrow \quad|\mathrm{A}|=-|\mathrm{A}|$
$\Rightarrow \quad 2|\mathrm{~A}|=0$ or $|\mathrm{A}|=0$.
6. $f(x)=x^{3}-3 x$

$$
\begin{array}{lll}
\therefore & \mathrm{f}^{\prime}(\mathrm{c})=3 \mathrm{c}^{2}-3=0 & \frac{1}{2} \\
\therefore & \mathrm{c}^{2}=1 \Rightarrow \mathrm{c}= \pm 1
\end{array}
$$

Rejecting $\mathrm{c}=1$ as it does not belong to $(-\sqrt{3}, 0)$,
we get $\mathrm{c}=-1$.
7. Let V be the volume of cube, then $\frac{\mathrm{dV}}{\mathrm{dt}}=9 \mathrm{~cm}^{3} / \mathrm{s}$.

Surface area (S) of cube $=6 x^{2}$, where x is the side.
then $V=x^{3} \Rightarrow \frac{d V}{d t}=3 x^{2} \frac{d x}{d t} \Rightarrow \frac{d x}{d t}=\frac{1}{3 x^{2}} \cdot \frac{d V}{d t}$
$S=6 x^{2} \Rightarrow \frac{d S}{d t}=12 x \frac{d x}{d t}=12 x \cdot \frac{1}{3 x^{2}} \frac{d V}{d t}$

$$
\begin{equation*}
=4 \cdot \frac{1}{10} \cdot 9=3.6 \mathrm{~cm}^{2} / \mathrm{s} \tag{1}
\end{equation*}
$$

8. $f(x)=x^{3}-3 x^{2}+6 x-100$
$f^{\prime}(x)=3 x^{2}-6 x+6$

$$
\begin{equation*}
=3\left[x^{2}-2 x+2\right]=3\left[(x-1)^{2}+1\right] \tag{1}
\end{equation*}
$$

since $\mathrm{f}^{\prime}(\mathrm{x})>0 \forall \mathrm{x} \in \mathbb{R} \quad \therefore \mathrm{f}(\mathrm{x})$ is increasing on \mathbb{R}
9. Equation of line PQ is $\frac{\mathrm{x}-2}{3}=\frac{\mathrm{y}-2}{-1}=\frac{\mathrm{z}-1}{-3}$

Any point on the line is $(3 \lambda+2,-\lambda+2,-3 \lambda+1)$
$3 \lambda+2=4 \Rightarrow \lambda=\frac{2}{3} \quad \therefore$ z coord. $=-3\left(\frac{2}{3}\right)+1=-1$.

OR

Let $\mathrm{R}(4, \mathrm{y}, \mathrm{z})$ lying on PQ divides PQ in the ratio $\mathrm{k}: 1$

$$
\begin{align*}
& \Rightarrow 4=\frac{5 \mathrm{k}+2}{\mathrm{k}+1} \Rightarrow \mathrm{k}=2 . \tag{1}\\
& \therefore \mathrm{z}=\frac{2(-2)+1(1)}{2+1}=\frac{-3}{3}=-1 . \tag{1}
\end{align*}
$$

10. Event A: Number obtained is even

B: Number obtained is red.
$\mathrm{P}(\mathrm{A})=\frac{3}{6}=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{3}{6}=\frac{1}{2}$

Since $P(A) \cdot P(B)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4} \neq P(P \cap B)$ which is $\frac{1}{6}$
$\therefore \quad \mathrm{A}$ and B are not independent events.
11. Let A works for x day and B for y days.
$\therefore \quad$ L.P.P. is Minimize $C=300 \mathrm{x}+400 \mathrm{y}$
Subject to: $\left\{\begin{array}{l}6 x+10 y \geq 60 \\ 4 x+4 y \geq 32 \\ x \geq 0, y \geq 0\end{array}\right.$
12. $\int \frac{\mathrm{dx}}{5-8 \mathrm{x}-\mathrm{x}^{2}}=\int \frac{\mathrm{dx}}{(\sqrt{21})^{2}-(\mathrm{x}+4)^{2}}$

$$
\begin{equation*}
=\frac{1}{2 \sqrt{21}} \log \left|\frac{\sqrt{21}+(x+4)}{\sqrt{21}-(x+4)}\right|+\mathrm{c} \tag{1}
\end{equation*}
$$

SECTION C

13. $\tan ^{-1} \frac{x-3}{x-4}+\tan ^{-1} \frac{x+3}{x+4}=\frac{\pi}{4}$

$$
\begin{aligned}
& \Rightarrow \quad \tan ^{-1}\left(\frac{\frac{x-3}{x-4}+\frac{x+3}{x+4}}{1-\frac{x-3}{x-4} \cdot \frac{x+3}{x+4}}\right)=\frac{\pi}{4} \\
& \Rightarrow \quad \frac{2 x^{2}-24}{-7}=1 \Rightarrow x^{2}=\frac{17}{2} \\
& \Rightarrow x= \pm \sqrt{\frac{17}{2}}
\end{aligned}
$$

14. $\Delta=\left|\begin{array}{ccc}a^{2}+2 a & 2 a+1 & 1 \\ 2 a+1 & a+2 & 1 \\ 3 & 3 & 1\end{array}\right|$

$$
\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2} \text { and } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}
$$

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
a^{2}-1 & a-1 & 0 \\
2(a-1) & a-1 & 0 \\
3 & 3 & 1
\end{array}\right| \\
& =(a-1)^{2}\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right|
\end{aligned}
$$

Expanding

$$
(a-1)^{2} \cdot(a-1)=(a-1)^{3} .
$$

OR

Let $\left(\begin{array}{rr}2 & -1 \\ 1 & 0 \\ -3 & 4\end{array}\right)\left(\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right)=\left(\begin{array}{rr}-1 & -8 \\ 1 & -2 \\ 9 & 22\end{array}\right)$
$\Rightarrow\left(\begin{array}{rr}2 \mathrm{a}-\mathrm{c} & 2 \mathrm{~b}-\mathrm{d} \\ \mathrm{a} & \mathrm{b} \\ -3 \mathrm{a}+4 \mathrm{c} & -3 \mathrm{~b}+4 \mathrm{~d}\end{array}\right)=\left(\begin{array}{rr}-1 & -8 \\ 1 & -2 \\ 9 & 22\end{array}\right)$
$\Rightarrow \quad 2 \mathrm{a}-\mathrm{c}=-1, \quad 2 \mathrm{~b}-\mathrm{d}=-8$

$$
\mathrm{a}=1, \quad \mathrm{~b}=-2
$$

$$
-3 a+4 c=9, \quad-3 b+4 d=22
$$

Solving to get $\mathrm{a}=1, \mathrm{~b}=-2, \mathrm{c}=3, \mathrm{~d}=4$
$\therefore \quad A=\left(\begin{array}{cc}1 & -2 \\ 3 & 4\end{array}\right)$
15. $x^{y}+y^{x}=a^{b}$

Let $u+v=a^{b}$, where $x^{y}=u$ and $y^{x}=v$.

$$
\begin{equation*}
\therefore \quad \frac{\mathrm{du}}{\mathrm{dx}}+\frac{\mathrm{dv}}{\mathrm{dx}}=0 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
y \log x=\log u \Rightarrow \frac{d u}{d x}=x^{y}\left[\frac{y}{x}+\log x \cdot \frac{d y}{d x}\right] \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
x \log y=\log v \Rightarrow \frac{d v}{d x}=y^{x}\left[\frac{x}{y} \frac{d y}{d x}+\log y\right] \tag{1}
\end{equation*}
$$

Putting in (i) $x^{y}\left[\frac{y}{x}+\log x \frac{d y}{d x}\right]+y^{x}\left[\frac{x}{y} \frac{d y}{d x}+\log y\right]=0$
$\Rightarrow \quad \frac{d y}{d x}=-\frac{y^{x} \log y+y \cdot x^{y-1}}{x^{y} \cdot \log x+x \cdot y^{x-1}}$

OR

$$
\begin{aligned}
& \mathrm{e}^{\mathrm{y}} \cdot(\mathrm{x}+1)=1 \Rightarrow \mathrm{e}^{\mathrm{y}} \cdot 1+(\mathrm{x}+1) \cdot \mathrm{e}^{\mathrm{y}} \cdot \frac{\mathrm{dy}}{\mathrm{~d}}=0 \\
\Rightarrow & \frac{d y}{d x}=-\frac{1}{(x+1)} \\
& \frac{d^{2} y}{d x^{2}}=+\frac{1}{(x+1)^{2}}=\left(\frac{d y}{d x}\right)^{2}
\end{aligned}
$$

16. $I=\int \frac{\cos \theta}{\left(4+\sin ^{2} \theta\right)\left(5-4 \cos ^{2} \theta\right)} d \theta=\int \frac{\cos \theta}{\left(4+\sin ^{2} \theta\right)\left(1+4 \sin ^{2} \theta\right)} d \theta$

$$
=\int \frac{\mathrm{dt}}{\left(4+\mathrm{t}^{2}\right)\left(1+4 \mathrm{t}^{2}\right)}, \text { where } \sin \theta=\mathrm{t}
$$

$$
=\int \frac{-\frac{1}{15}}{4+\mathrm{t}^{2}} \mathrm{dt}+\int \frac{\frac{4}{15}}{1+4 \mathrm{t}^{2}} \mathrm{dt}
$$

$$
=-\frac{1}{30} \tan ^{-1}\left(\frac{\mathrm{t}}{2}\right)+\frac{4}{30} \tan ^{-1}(2 \mathrm{t})+\mathrm{c}
$$

$$
=-\frac{1}{30} \tan ^{-1}\left(\frac{\sin \theta}{2}\right)+\frac{2}{15} \tan ^{-1}(2 \sin \theta)+\mathrm{c}
$$

17. $I=\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x=\int_{0}^{\pi} \frac{(\pi-x) \tan x}{\sec x+\tan x} d x$

OR

$$
\begin{aligned}
I & =\int_{1}^{4}\{|x-1|+|x-2|+|x-4|\} d x \\
& =\int_{1}^{4}(x-1) d x-\int_{1}^{2}(x-2) d x+\int_{2}^{4}(x-2) d x-\int_{1}^{4}(x-4) d x \\
& \left.\left.\left.\left.=\frac{(x-1)^{2}}{2}\right]_{1}^{4}-\frac{(x-2)^{2}}{2}\right]_{1}^{2}+\frac{(x-2)^{2}}{2}\right]_{2}^{4}-\frac{(x-4)^{2}}{2}\right]_{1}^{4} \\
& =\frac{9}{2}+\frac{1}{2}+2+\frac{9}{2}=11 \frac{1}{2} \text { or } \frac{23}{2}
\end{aligned}
$$

18. Given differential equation can be written as

$$
\begin{equation*}
\left(1+x^{2}\right) \frac{d y}{d x}+y=\tan ^{-1} x \Rightarrow \frac{d y}{d x}+\frac{1}{1+x^{2}} y=\frac{\tan ^{-1} x}{1+x^{2}} \tag{1}
\end{equation*}
$$

Integrating factor $=e^{\tan ^{-1}} \mathrm{x}$.
$\therefore \quad$ Solution is $y \cdot e^{\tan ^{-1}} \mathrm{x}=\int \tan ^{-1} \mathrm{x} \cdot \mathrm{e}^{\tan ^{-1} \mathrm{x}} \frac{1}{1+\mathrm{x}^{2}} d \mathrm{x}$
$\Rightarrow \quad y \cdot e^{\tan ^{-1}} x=e^{\tan ^{-1}} x \cdot\left(\tan ^{-1} x-1\right)+c$
or $\mathrm{y}=\left(\tan ^{-1} \mathrm{x}-1\right)+\mathrm{c} \cdot \mathrm{e}^{-\tan ^{-1} \mathrm{x}}$
19. $\overrightarrow{A B}=-\hat{i}-2 \hat{j}-6 \hat{k}, \overrightarrow{B C}=2 \hat{i}-\hat{j}+\hat{k}, \overrightarrow{C A}=-\hat{i}+3 \hat{j}+5 \hat{k}$

Since $\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{BC}}, \overrightarrow{\mathrm{CA}}$, are not parallel vectors, and $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0} \quad \therefore \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ form a triangle
Also $\overrightarrow{\mathrm{BC}} \cdot \overrightarrow{\mathrm{CA}}=0 \quad \therefore \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ form a right triangle
Area of $\Delta=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{BC}}|=\frac{1}{2} \sqrt{210}$ 1
20. Given points, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are coplanar, if the
vectors $\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ and $\overrightarrow{\mathrm{AD}}$ are coplanar, i.e.

$$
\overrightarrow{\mathrm{AB}}=-2 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}, \overrightarrow{\mathrm{AC}}=-\hat{\mathrm{i}}-3 \hat{\mathrm{j}}-8 \hat{\mathrm{k}}, \overrightarrow{\mathrm{AD}}=\hat{\mathrm{i}}+(\lambda-9) \hat{k}
$$

are coplanar

$$
\begin{aligned}
& \text { i.e., }\left|\begin{array}{ccc}
-2 & -4 & -6 \\
-1 & -3 & -8 \\
1 & 0 & \lambda-9
\end{array}\right|=0 \\
& -2[-3 \lambda+27]+4[-\lambda+17]-6(3)=0 \\
& \Rightarrow \quad \lambda=2
\end{aligned}
$$

21. Writing

+	1	3	5	7
1	\times	4	6	8
3	4	\times	8	10
5	6	8	\times	12
7	8	10	12	\times

$$
\begin{aligned}
& \begin{array}{lllllll}
\therefore & \mathrm{X}: & 4 & 6 & 8 & 10 & 12
\end{array} \\
& \mathrm{P}(\mathrm{X}): \quad \frac{2}{12} \quad \frac{2}{12} \quad \frac{4}{12} \quad \frac{2}{12} \quad \frac{2}{12} \\
& \begin{array}{lllll}
\frac{1}{6} & \frac{1}{6} & \frac{2}{6} & \frac{1}{6} & \frac{1}{6}
\end{array} \\
& \mathrm{xP}(\mathrm{X}): \quad \frac{4}{6} \quad \frac{6}{6} \quad \frac{16}{6} \quad \frac{10}{6} \quad \frac{12}{6} \\
& \mathrm{x}^{2} \mathrm{P}(\mathrm{X}): \quad \frac{16}{6} \quad \frac{36}{6} \quad \frac{128}{6} \quad \frac{100}{6} \quad \frac{144}{6}
\end{aligned}
$$

$$
\begin{equation*}
\Sigma \mathrm{xP}(\mathrm{x})=\frac{48}{6}=8 \quad \therefore \text { Mean }=8 \tag{1}
\end{equation*}
$$

Variance $=\Sigma x^{2} P(x)-[\Sigma x P(x)]^{2}=\frac{424}{6}-64=\frac{20}{3}$
22. Let E_{1} : Selecting a student with 100% attendance
E_{2} : Selecting a student who is not regular
A: selected student attains A grade.

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{30}{100} \text { and } \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{70}{100} \\
& \begin{aligned}
\mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right) & =\frac{70}{100} \text { and } \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{2}\right)=\frac{10}{100} \\
\mathrm{P}\left(\mathrm{E}_{1} / \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{2}\right)} \\
& =\frac{\frac{30}{100} \times \frac{70}{100}}{\frac{30}{100} \times \frac{70}{100}+\frac{70}{100} \times \frac{10}{100}} \\
& =\frac{3}{4}
\end{aligned}
\end{aligned}
$$

Regularity is required everywhere or any relevant value
23.

24. Getting $\left[\begin{array}{rrr}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right]\left[\begin{array}{rrr}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right]=\left[\begin{array}{lll}8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8\end{array}\right]$

Given equations can be written as $\left(\begin{array}{rrr}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}4 \\ 9 \\ 1\end{array}\right)$
$\Rightarrow \quad \mathrm{AX}=\mathrm{B}$
From (i) $\quad \mathrm{A}^{-1}=\frac{1}{8}\left(\begin{array}{rrr}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right)$

$$
\begin{aligned}
\therefore \quad \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B} & =\frac{1}{8}\left(\begin{array}{rrr}
-4 & 4 & 4 \\
-7 & 1 & 3 \\
5 & -3 & -1
\end{array}\right)\left(\begin{array}{l}
4 \\
9 \\
1
\end{array}\right) \\
& =\frac{1}{8}\left(\begin{array}{r}
24 \\
-16 \\
-8
\end{array}\right)=\left(\begin{array}{r}
3 \\
-2 \\
-1
\end{array}\right)
\end{aligned}
$$

$$
\Rightarrow \mathrm{x}=3, \mathrm{y}=-2, \mathrm{z}=-1
$$

25. Let $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{R}-\left\{-\frac{4}{3}\right\}$ and $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$

$$
\begin{aligned}
& \Rightarrow \quad \frac{4 x_{1}+3}{3 x_{1}+4}=\frac{4 x_{2}+3}{3 x_{2}+4} \Rightarrow\left(4 x_{1}+3\right)\left(3 x_{2}+4\right)=\left(3 x_{1}+4\right)\left(4 x_{2}+3\right) \\
& \Rightarrow \quad 12 x_{1} x_{2}+16 x_{1}+9 x_{2}+12=12{ }_{1} x_{2}+16 x_{2}+9 x_{1}+12 \\
& \Rightarrow \quad 16\left(x_{1}-x_{2}\right)-9\left(x_{1}-x_{2}\right)=0 \Rightarrow x_{1}-x_{2}=0 \Rightarrow x_{1}=x_{2}
\end{aligned}
$$

Hence f is a $1-1$ function
Let $y=\frac{4 x+3}{3 x+4}$, for $\mathrm{y} \in \mathrm{R}-\left\{\frac{4}{3}\right\}$

$$
\begin{aligned}
& 3 x y+4 y=4 x+3 \Rightarrow 4 x-3 x y=4 y-3 \\
\Rightarrow & x=\frac{4 y-3}{4-3 y} \quad \therefore \forall y \in R-\left\{\frac{4}{3}\right\}, x \in R-\left\{-\frac{4}{3}\right\}
\end{aligned}
$$

Hence f is ONTO and so bijective
and $\mathrm{f}^{-1}(\mathrm{y})=\frac{4 \mathrm{y}-3}{4-3 \mathrm{y}} ; \mathrm{y} \in \mathrm{R}-\left\{\frac{4}{3}\right\}$

$$
\mathrm{f}^{-1}(0)=-\frac{3}{4}
$$

and $f^{-1}(x)=2 \Rightarrow \frac{4 x-3}{4-3 x}=2$
$\Rightarrow 4 \mathrm{x}-3=8-6 \mathrm{x}$
$\Rightarrow \quad 10 \mathrm{x}=11 \Rightarrow \mathrm{x}=\frac{11}{10}$

OR

$$
\begin{aligned}
& (a, b) *(c, d)=(a c, b+a d) ;(a, b),(c, d) \in A \\
& (c, d) *(a, b)=(c a, d+b c)
\end{aligned}
$$

Since $\mathrm{b}+\mathrm{ad} \neq \mathrm{d}+\mathrm{bc} \Rightarrow *$ is NOT comutative
for associativity, we have,

$$
\begin{aligned}
& {[(\mathrm{a}, \mathrm{~b}) *(\mathrm{c}, \mathrm{~d})] *(\mathrm{e}, \mathrm{f})=(\mathrm{ac}, \mathrm{~b}+\mathrm{ad}) *(\mathrm{e}, \mathrm{f})=(\mathrm{ace}, \mathrm{~b}+\mathrm{ad}+\mathrm{acf})} \\
& (\mathrm{a}, \mathrm{~b}) *[(\mathrm{c}, \mathrm{~d}) *(\mathrm{e}, \mathrm{f})]=(\mathrm{a}, \mathrm{~b}) *(\mathrm{ce}, \mathrm{~d}+\mathrm{cf})=(\mathrm{ace}, \mathrm{~b}+\mathrm{ad}+\mathrm{acf})
\end{aligned}
$$

\Rightarrow * is associative
(i) Let (e, f) be the identity element in A

Then $(\mathrm{a}, \mathrm{b}) *(\mathrm{e}, \mathrm{f})=(\mathrm{a}, \mathrm{b})=(\mathrm{e}, \mathrm{f}) *(\mathrm{a}, \mathrm{b})$
$\Rightarrow \quad(\mathrm{ae}, \mathrm{b}+\mathrm{af})=(\mathrm{a}, \mathrm{b})=(\mathrm{ae}, \mathrm{f}+\mathrm{be})$
$\Rightarrow \mathrm{e}=1, \mathrm{f}=0 \Rightarrow(1,0)$ is the identity element
(ii) Let (c, d) be the inverse element for (a, b)
$\Rightarrow \quad(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(1,0)=(\mathrm{c}, \mathrm{d}) *(\mathrm{a}, \mathrm{b})$
$\Rightarrow \quad(\mathrm{ac}, \mathrm{b}+\mathrm{ad})=(1,0)=(\mathrm{ac}, \mathrm{d}+\mathrm{bc})$
$\Rightarrow \mathrm{ac}=1 \Rightarrow \mathrm{c}=\frac{1}{\mathrm{a}}$ and $\mathrm{b}+\mathrm{ad}=0 \Rightarrow \mathrm{~d}=-\frac{\mathrm{b}}{\mathrm{a}}$ and $\mathrm{d}+\mathrm{bc}=0 \Rightarrow \mathrm{~d}=-\mathrm{bc}=-\mathrm{b}\left(\frac{1}{\mathrm{a}}\right)$
$\Rightarrow\left(\frac{1}{\mathrm{a}},-\frac{\mathrm{b}}{\mathrm{a}}\right), \mathrm{a} \neq 0$ is the inverse of $(\mathrm{a}, \mathrm{b}) \in \mathrm{A}$
26. Let the sides of cuboid be x, x, y

$$
\begin{aligned}
& \Rightarrow \quad x^{2} y=k \text { and } S=2\left(x^{2}+x y+x y\right)=2\left(x^{2}+2 x y\right) \\
& \therefore \quad \mathrm{S}=2\left[x^{2}+2 x \frac{k}{x^{2}}\right]=2\left[x^{2}+\frac{2 k}{x}\right] \\
& \\
& \frac{d s}{d x}=2\left[2 x-\frac{2 k}{x^{2}}\right] \\
& \therefore \quad \\
& \quad \frac{d s}{d x}=0 \Rightarrow x^{3}=k=x^{2} y \Rightarrow x=y \\
& \\
& \quad \frac{d^{2} s}{d^{2}}=2\left[2+\frac{4 k}{x^{3}}\right]>0 \quad \therefore x=y \text { will given minimum surface area }
\end{aligned}
$$

and $x=y$, means sides are equal
$\therefore \quad$ Cube will have minimum surface area
27.

Figure

$$
\left.\begin{array}{l}
\text { Equation of } \mathrm{AB}: \mathrm{y}=\frac{5}{2} \mathrm{x}-9 \\
\text { Equation of } \mathrm{BC}: \mathrm{y}=12-\mathrm{x} \\
\text { Equation of } \mathrm{AC}: \mathrm{y}=\frac{3}{4} \mathrm{x}-2
\end{array}\right\}
$$

\therefore Area $(\mathrm{A})=\int_{4}^{6}\left(\frac{5}{2} \mathrm{x}-9\right) \mathrm{dx}+\int_{6}^{8}(12-\mathrm{x}) \mathrm{dx}-\int_{4}^{8}\left(\frac{3}{4} \mathrm{x}-2\right) \mathrm{dx}$

$$
=\left[\frac{5}{4} x^{2}-9 x\right]_{4}^{6}+\left[12 x-\frac{x^{2}}{2}\right]_{6}^{8}-\left[\frac{3}{8} x^{2}-2 x\right]_{4}^{8}
$$

$$
=7+10-10=7 \text { sq.units }
$$

Figure

$$
\begin{aligned}
& \quad 4 y=3 x^{2} \text { and } 3 x-2 y+12=0 \Rightarrow 4\left(\frac{3 x+12}{2}\right)=3 x^{2} \\
& \Rightarrow 3 x^{2}-6 x-24=0 \text { or } x^{2}-2 x-8=0 \Rightarrow(x-4)(x+2)=0 \\
& \Rightarrow \\
& x \text {-coordinates of points of intersection are } x=-2, x=4
\end{aligned}
$$

$$
\therefore \operatorname{Area}(A)=\int_{-2}^{4}\left[\frac{1}{2}(3 x+12)-\frac{3}{4} \mathrm{x}^{2}\right] \mathrm{dx}
$$

$$
=\left[\frac{1}{2} \frac{(3 x+12)^{2}}{6}-\frac{3}{4} \frac{x^{3}}{3}\right]_{-2}^{4}
$$

$$
\begin{equation*}
=45-18=27 \text { sq.units } \tag{1}
\end{equation*}
$$

28. $\frac{d y}{d x}=\frac{x+2 y}{x-y}=\frac{1+\frac{2 y}{x}}{1-\frac{y}{x}}$

$$
\frac{\mathrm{y}}{\mathrm{x}}=\mathrm{v} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{v}+\mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}} \quad \therefore \mathrm{v}+\mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{1+2 \mathrm{v}}{1-\mathrm{v}}
$$

$$
\Rightarrow \quad x \frac{d v}{d x}=-\frac{1+2 v-v+v^{2}}{v-1} \Rightarrow \int \frac{v-1}{v^{2}+v+1} d v=-\frac{d x}{x}
$$

$$
\Rightarrow \int \frac{2 v+1-3}{v^{2}+v+1} d v=\int-\frac{2}{x} d x \Rightarrow \int \frac{2 v+1}{v^{2}+v+1} d v-3 \int \frac{1}{\left(v+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d v=-\int \frac{2}{x} d x
$$

$$
\Rightarrow \quad \log \left|\mathrm{v}^{2}+\mathrm{v}+1\right|-3 \cdot \frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \mathrm{v}+1}{\sqrt{3}}\right)=-\log |\mathrm{x}|^{2}+\mathrm{c}
$$

$$
\Rightarrow \quad \log \left|y^{2}+x y+x^{2}\right|-2 \sqrt{3} \tan ^{-1}\left(\frac{2 y+x}{\sqrt{3} x}\right)=c
$$

$$
\frac{1}{2}
$$

$$
x=1, y=0 \Rightarrow c=-2 \sqrt{3} \cdot \frac{\pi}{6}=-\frac{\sqrt{3}}{3} \pi
$$

$\therefore \quad \log \left|y^{2}+x y+x^{2}\right|-2 \sqrt{3} \tan ^{-1}\left(\frac{2 y+x}{\sqrt{3} x}\right)+\frac{\sqrt{3}}{3} \pi=0$
29. Equation of line through $(3,-4,-5)$ and $(2,-3,1)$ is

$$
\begin{equation*}
\frac{x-3}{-1}=\frac{y+4}{1}=\frac{z+5}{6} \tag{i}
\end{equation*}
$$

Eqn. of plane through the three given points is

$$
\begin{align*}
& \left|\begin{array}{ccc}
\mathrm{x}-1 & \mathrm{y}-2 & \mathrm{z}-3 \\
3 & 0 & -6 \\
-1 & 2 & 0
\end{array}\right|=0 \Rightarrow(x-1)(12)-(y-2)(-6)+(\mathrm{z}-3)(6)=0 \\
& \text { or } \quad 2 x+y+z-7=0 \quad \ldots \text { (ii) } \tag{ii}
\end{align*}
$$

Any point on line (i) is $(-\lambda+3, \lambda-4,6 \lambda-5)$

If this point lies on plane, then $2(-\lambda+3)+(\lambda-4)+(6 \lambda-5)-7=1$
$\Rightarrow \lambda=2$
Required point is $(1,-2,7)$

OR

Equation of plane cutting intercepts (say, a, b, c) on the axes is

$$
\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{~b}}+\frac{\mathrm{z}}{\mathrm{c}}=1, \text { with } \mathrm{A}(\mathrm{a}, 0,0), \mathrm{B}(0, \mathrm{~b}, 0) \text { and } \mathrm{C}(0,0, \mathrm{c})
$$

distance of this plane from orgin is $3 p=\frac{|-1|}{\sqrt{\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{b}\right)^{2}+\left(\frac{1}{c}\right)^{2}}}$
$\Rightarrow \quad \frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{c}^{2}}=\frac{1}{9 \mathrm{p}^{2}}$
Centroid of $\triangle \mathrm{ABC}$ is $\left(\frac{\mathrm{a}}{3}, \frac{\mathrm{~b}}{3}, \frac{\mathrm{c}}{3}\right)=(\mathrm{x}, \mathrm{y}, \mathrm{z})$
$\Rightarrow \quad \mathrm{a}=3 \mathrm{x}, \mathrm{b}=3 \mathrm{y}, \mathrm{c}=3 \mathrm{z}$, we get from (i)
$\frac{1}{9 x^{2}}+\frac{1}{9 y^{2}}+\frac{1}{9 z^{2}}=\frac{1}{9 p^{2}}$ or $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{1}{p^{2}}$

