EXPECTED ANSWER/VALUE POINTS

SECTION A

1. $\left|\mathrm{A}^{-1}\right|=\frac{1}{|\mathrm{~A}|} \Rightarrow \mathrm{k}=-1$
2. $\lim _{x \rightarrow 0_{-}} f(x)=\lim _{x \rightarrow 0_{-}} \frac{k x}{|x|}=-k$

$$
\mathrm{k}=-3
$$

3. $\int_{2}^{3} 3^{x} d x=\left[\frac{3^{x}}{\log 3}\right]_{2}^{3}=\frac{18}{\log 3}$
4. $\cos ^{2} 90^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} \gamma=1$
$\cos \gamma= \pm \frac{\sqrt{3}}{2}, \gamma=\frac{\pi}{6}$ or $\frac{5 \pi}{6}$

SECTION B

5. Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{n}}$ be skew symmetric matrix

A is skew symmetric

$$
\begin{array}{ll}
\therefore & A=-A^{\prime} \\
\Rightarrow & a_{i j}=-a_{j i} \forall i, j
\end{array}
$$

For diagonal elements $\mathrm{i}=\mathrm{j}$,
$\Rightarrow \quad 2 \mathrm{a}_{\mathrm{ii}}=0$
$\Rightarrow \quad \mathrm{a}_{\mathrm{ii}}=0 \Rightarrow$ diagonal elements are zero.
6. From the given equation
$2 \sin y \cos y \cdot \frac{d y}{d x}-\sin x y \cdot\left[x \cdot \frac{d y}{d x}+y \cdot 1\right]=0$

$$
\begin{aligned}
& \Rightarrow \quad \frac{d y}{d x}=\frac{y \sin x y}{\sin 2 y-x \sin (x y)} \\
& \left.\therefore \quad \frac{d y}{d x}\right|_{x=1, y=\frac{\pi}{4}}=\frac{\pi}{4(\sqrt{2}-1)}
\end{aligned}
$$

7. $\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{dv}}{\mathrm{dt}}=4 \pi \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{dr}}{\mathrm{dt}}=\frac{3}{4 \pi \mathrm{r}^{2}} \\
& \mathrm{~S}=4 \pi \mathrm{r}^{2} \\
& \Rightarrow \quad \frac{\mathrm{dS}}{\mathrm{dt}}=8 \pi \mathrm{r} \cdot \frac{\mathrm{dr}}{\mathrm{dt}} \\
& \left.\Rightarrow \quad \frac{\mathrm{dS}}{\mathrm{dt}}\right|_{\mathrm{r}=2}=3 \mathrm{~cm}^{2} / \mathrm{s}
\end{aligned}
$$

8. $f(x)=4 x^{3}-18 x^{2}+27 x-7$

$$
\begin{aligned}
f^{\prime}(x) & =12 x^{2}-36 x+27 \\
& =3(2 x-3)^{2} \geq 0 \quad \forall x \in R
\end{aligned}
$$

$\Rightarrow f(x)$ is increasing on R
9. Equation of given line is $\frac{x-5}{1 / 5}=\frac{y-2}{-1 / 7}=\frac{z}{1 / 35}$

Its DR's $\left\langle\frac{1}{5},-\frac{1}{7}, \frac{1}{35}\right\rangle$ or $\langle 7,-5,1\rangle$
Equation of required line is

$$
\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})+\lambda(7 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+\hat{\mathrm{k}})
$$

10. $\mathrm{P}\left(\mathrm{E} \cap \mathrm{F}^{\prime}\right)=\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{E} \cap \mathrm{F})$

$$
\begin{aligned}
& =P(E)-P(E) \cdot P(F) \\
& =P(E)[1-P(F)] \\
& =P(E) P\left(F^{\prime}\right)
\end{aligned}
$$

$\Rightarrow \mathrm{E}$ and F^{\prime} are independent events.
11. Let x necklaces and y bracelets are manufactured
\therefore L.P.P. is
Maximize profit, $P=100 x+300 y$
subject to constraints
$x+y \leq 24$
$\frac{1}{2} \mathrm{x}+\mathrm{y} \leq 16$ or $\mathrm{x}+2 \mathrm{y} \leq 32$
$\mathrm{x}, \mathrm{y}, \geq 1$
12. $\int \frac{d x}{x^{2}+4 x+8}=\int \frac{d x}{(x+2)^{2}+(2)^{2}}$

$$
=\frac{1}{2} \tan ^{-1} \frac{x+2}{2}+C
$$

SECTION C

13. Let $\frac{1}{2} \cos ^{-1} \frac{\mathrm{a}}{\mathrm{b}}=\mathrm{x}$

$$
\begin{aligned}
\text { LHS } & =\tan \left(\frac{\pi}{4}+x\right)+\tan \left(\frac{\pi}{4}-x\right)=\frac{1+\tan x}{1-\tan x}+\frac{1-\tan x}{1+\tan x} \\
& =\frac{2\left(1+\tan ^{2} x\right)}{1-\tan ^{2} x}=\frac{2}{\cos 2 x} \\
& =\frac{2 b}{a}=\text { RHS }
\end{aligned}
$$

14. $\left|\begin{array}{ccc}x & x+y & x+2 y \\ x+2 y & x & x+y \\ x+y & x+2 y & x\end{array}\right|$

$$
\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}
$$

$$
=3(x+y)\left|\begin{array}{ccc}
1 & x+y & x+2 y \\
1 & x & x+y \\
1 & x+2 y & x
\end{array}\right|
$$

$$
\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}
$$

$$
\begin{aligned}
& =3(x+y)\left|\begin{array}{ccc}
0 & y & y \\
1 & x & x+y \\
0 & 2 y & -y
\end{array}\right| \\
& =-3(x+y)\left(-y^{2}-2 y^{2}\right)=9 y^{2}(x+y)
\end{aligned}
$$

OR

Let $\quad D=\left[\begin{array}{cc}\mathrm{x} & \mathrm{y} \\ \mathrm{z} & \mathrm{w}\end{array}\right]$
$C D=A B \Rightarrow\left[\begin{array}{cc}2 \mathrm{x}+5 \mathrm{z} & 2 \mathrm{y}+5 \mathrm{w} \\ 3 \mathrm{x}+8 \mathrm{z} & 3 \mathrm{y}+8 \mathrm{w}\end{array}\right]=\left[\begin{array}{cc}3 & 0 \\ 43 & 22\end{array}\right]$
$2 \mathrm{x}+5 \mathrm{z}=3,3 \mathrm{x}+8 \mathrm{z}=43 ; 2 \mathrm{y}+5 \mathrm{w}=0,3 \mathrm{y}+8 \mathrm{w}=22$.
Solving, we get $\mathrm{x}=-191, \mathrm{y}=-110, \mathrm{z}=77, \mathrm{w}=44$
$\therefore \mathrm{D}=\left[\begin{array}{cc}-191 & -110 \\ 77 & 44\end{array}\right]$
15. $\mathrm{y}=(\sin \mathrm{x})^{\mathrm{x}}+\sin ^{-1} \sqrt{\mathrm{x}}$
$y=u+v \Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
$u=(\sin x)^{x}$
$\Rightarrow \quad \log u=x \log \sin x$
$\Rightarrow \quad \frac{\mathrm{du}}{\mathrm{dx}}=(\sin \mathrm{x})^{\mathrm{x}}[\mathrm{x} \cot \mathrm{x}+\log \sin \mathrm{x}]$

$$
\begin{aligned}
& v=\sin ^{-1} \sqrt{x} \\
\Rightarrow & \frac{d v}{d x}=\frac{1}{2 \sqrt{x-x^{2}}} \\
\therefore \quad & \frac{d y}{d x}=(\sin x)^{x}[x \cot x+\log \sin x]+\frac{1}{2 \sqrt{x-x^{2}}}
\end{aligned}
$$

OR

$$
\begin{align*}
& x^{m} \cdot y^{n}=(x+y)^{m+n} \\
\Rightarrow & m \log x+n \log y=(m+n) \log (x+y) \\
\Rightarrow & \frac{m}{x}+\frac{n}{y} \cdot \frac{d y}{d x}=\frac{m+n}{x+y}\left(1+\frac{d y}{d x}\right) \\
\Rightarrow & \frac{d y}{d x}=\frac{y}{x} \quad \ldots(i) \tag{i}\\
& \frac{d^{2} y}{d x^{2}}=\frac{x \frac{d y}{d x}-y}{x^{2}}=0 \quad \ldots \text { (ii) (using (i)) } \tag{ii}
\end{align*}
$$

16. $\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+2\right)^{2}}=\int \frac{d y}{(y+1)(y+2)^{2}} \quad\left[\right.$ by substituting $\left.x^{2}=y\right]$

$$
=\int \frac{d y}{y+1}-\int \frac{d y}{y+2}-\int \frac{d y}{(y+2)^{2}} \quad \text { (using partial fraction) } \quad 1 \frac{1}{2}
$$

$$
=\log (y+1)-\log (y+2)+\frac{1}{y+2}+C
$$

$$
=\log \left(x^{2}+1\right)-\log \left(x^{2}+2\right)+\frac{1}{x^{2}+2}+C
$$

17. $I=\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$

$$
=\int_{0}^{\pi} \frac{(\pi-x) \sin x}{1+\cos ^{2} x} d x
$$

$$
\Rightarrow 2 \mathrm{I}=\pi \int_{0}^{\pi} \frac{\sin \mathrm{xdx}}{1+\cos ^{2} \mathrm{x}}
$$

Put $\cos x=t$ and $-\sin x d x=d t$

$$
\begin{aligned}
& =-\pi \int_{1}^{-1} \frac{\mathrm{dt}}{1+\mathrm{t}^{2}} \\
& =\pi\left[\tan ^{-1} \mathrm{t}\right]_{-1}^{1}=\frac{\pi^{2}}{2} \\
\Rightarrow \mathrm{I} & =\frac{\pi^{2}}{4}
\end{aligned}
$$

$$
1 \frac{1}{2}
$$

$$
\frac{1}{2}
$$

OR

$I=\int_{0}^{3 / 2}|x \sin \pi x| d x$

$$
=\int_{0}^{1} \mathrm{x} \sin \pi \mathrm{x} \cdot \mathrm{dx}-\int_{1}^{3 / 2} \mathrm{x} \sin \pi \mathrm{x} d \mathrm{x}
$$

$$
=\left[-x \frac{\cos \pi x}{\pi}+\frac{\sin \pi x}{\pi^{2}}\right]_{0}^{1}-\left[-\frac{x \cos \pi x}{\pi}+\frac{\sin \pi x}{\pi^{2}}\right]_{1}^{3 / 2}
$$

$$
=\frac{2}{\pi}+\frac{1}{\pi^{2}}
$$

18. $x^{2}-y^{2}=C\left(x^{2}+y^{2}\right)^{2} \Rightarrow 2 x-2 y y^{\prime}=2 C\left(x^{2}+y^{2}\right)\left(2 x+2 y y^{\prime}\right)$

$$
\begin{aligned}
& \Rightarrow \quad\left(x-y y^{\prime}\right)=\frac{x^{2}-y^{2}}{y^{2}+x^{2}}\left(2 x+2 y y^{\prime}\right) \Rightarrow\left(y^{2}+x^{2}\right)\left(x-y y^{\prime}\right)=\left(x^{2}-y^{2}\right)\left(2 x+2 y y^{\prime}\right) \\
& \Rightarrow \quad\left[-2 y\left(x^{2}-y^{2}\right)-y\left(y^{2}+x^{2}\right)\right] \frac{d y}{d x}=2 x\left(x^{2}-y^{2}\right)-x\left(y^{2}+x^{2}\right) \\
& \Rightarrow \quad\left(y^{3}-3 x^{2} y\right) \frac{d y}{d x}=\left(x^{3}-3 x y^{2}\right) \\
& \Rightarrow \quad\left(y^{3}-3 x^{2} y\right) d y=\left(x^{3}-3 x y^{2}\right) d x
\end{aligned}
$$

Hence $x^{2}-y^{2}=C\left(x^{2}+y^{2}\right)^{2}$ is the solution of given differential equation.
19. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & 0 \\ c_{1} & c_{2} & c_{3}\end{array}\right|=c_{2}-c_{3}$
(a) $\mathrm{c}_{1}=1, \mathrm{c}_{2}=2$
$\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=2-c_{3}$
$\because \vec{a}, \vec{b}, \vec{c}$ are coplanar $[\vec{a} \vec{b} \vec{c}]=0 \Rightarrow c_{3}=2$
(b) $\mathrm{c}_{2}=-1, \mathrm{c}_{3}=1$
$[\vec{a} \vec{b} \vec{c}]=c_{2}-c_{3}=-2 \neq 0$
$\Rightarrow \quad$ No value of c_{1} can make $\vec{a}, \vec{b}, \vec{c}$ coplanar
20. $|\vec{a}|=|\vec{b}|=|\vec{c}|$ and $\vec{a} \cdot \vec{b}=0=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}$

Let α, β and γ be the angles made by $(\vec{a}+\vec{b}+\vec{c})$ with \vec{a}, \vec{b} and \vec{c} respectively

$$
(\vec{a}+\vec{b}+\vec{c}) \cdot \vec{a}=|\vec{a}+\vec{b}+\vec{c}||\vec{a}| \cos \alpha
$$

$$
\Rightarrow \alpha=\cos ^{-1}\left(\frac{|\vec{a}|}{|\vec{a}+\vec{b}+\vec{c}|}\right)
$$

Similarly, $\beta=\cos ^{-1}\left(\frac{|\vec{b}|}{|\vec{a}+\vec{b}+\vec{c}|}\right)$ and $\gamma=\cos ^{-1}\left(\frac{|\vec{c}|}{|\vec{a}+\vec{b}+\vec{c}|}\right)$
using (i), we get $\alpha=\beta=\gamma$

Now $|\vec{a}+\vec{b}+\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})$
$\Rightarrow|\vec{a}+\vec{b}+\vec{c}|^{2}=3|\vec{a}|^{2} \quad$ (using (i))
$\Rightarrow|\vec{a}+\vec{b}+\vec{c}|=\sqrt{3}|\vec{a}|$
$\therefore \alpha=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\beta=\gamma$

21. | x | $\mathrm{P}(\mathrm{x})$ |
| ---: | ---: |
| 0 | p |

1	p
2	k
3	k

$\Sigma \mathrm{p}(\mathrm{x})=1 \Rightarrow 2 \mathrm{p}+2 \mathrm{k}=1 \Rightarrow \mathrm{k}=\frac{1}{2}-\mathrm{p}$

As per problem, $\Sigma \mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}=2 \Sigma \mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$
$\Rightarrow \quad \mathrm{p}=\frac{3}{8}$
22. Let H_{1} be the event that 6 appears on throwing a die
H_{2} be the event that 6 does not appear on throwing a die
E be the event that he reports it is six

$$
\mathrm{P}\left(\mathrm{H}_{1}\right)=\frac{1}{6}, \mathrm{P}\left(\mathrm{H}_{2}\right)=1-\frac{1}{6}=\frac{5}{6}
$$

$$
\mathrm{P}\left(\mathrm{E} / \mathrm{H}_{1}\right)=\frac{4}{5}, \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{2}\right)=\frac{1}{5}
$$

$$
\mathrm{P}\left(\mathrm{H}_{1} / \mathrm{E}\right)=\frac{\mathrm{P}\left(\mathrm{H}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{1}\right)}{\mathrm{P}\left(\mathrm{H}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{1}\right)+\mathrm{P}\left(\mathrm{H}_{2}\right) \mathrm{P}\left(\mathrm{E} / \mathrm{H}_{2}\right)}
$$

$$
=\frac{4}{9}
$$

Relevant value: Yes, Truthness leads to more respect in society.
23.

Correct graph of 3 lines

Correct shade of 3 lines

$$
\begin{aligned}
& Z=5 x+10 y \\
& \left.Z\right|_{\mathrm{A}(60,0)}=300 \\
& \left.Z\right|_{\mathrm{B}(120,0)}=600 \\
& \left.\mathrm{Z}\right|_{\mathrm{C}(60,30)}=600 \\
& \left.\mathrm{Z}\right|_{\mathrm{D}(40,20)}=400
\end{aligned}
$$

Minimum value of $Z=300$ at $x=60, y=0$

SECTION D

24. $\mathrm{A}=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right] \cdot\left[\begin{array}{ccc}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$A B=I \Rightarrow A^{-1}=B=\left[\begin{array}{ccc}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$
Given equations in matrix form are:

$$
\left[\begin{array}{ccc}
1 & 0 & 3 \\
-1 & 2 & -2 \\
2 & -3 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
9 \\
4 \\
-3
\end{array}\right]
$$

$$
\mathrm{A}^{\prime} \mathrm{X}=\mathrm{C}
$$

$$
\Rightarrow \quad \mathrm{X}=\left(\mathrm{A}^{\prime}\right)^{-1} \mathrm{C}=\left(\mathrm{A}^{-1}\right)^{\prime} \mathrm{C}
$$

$$
\Rightarrow\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 9 & 6 \\
0 & 2 & 1 \\
1 & -3 & -2
\end{array}\right]\left[\begin{array}{c}
9 \\
4 \\
-3
\end{array}\right]=\left[\begin{array}{l}
0 \\
5 \\
3
\end{array}\right]
$$

$$
\Rightarrow \quad \mathrm{x}=0, \mathrm{y}=5, \mathrm{z}=3
$$

25. Clearly $\mathrm{f}^{-1}(\mathrm{y})=\mathrm{g}(\mathrm{y}):[-5, \infty) \rightarrow \mathrm{R}_{+}$and,

$$
f o g(y)=f\left(\frac{\sqrt{y+6}-1}{3}\right)=9\left(\frac{\sqrt{y+6}-1}{3}\right)^{2}+6\left(\frac{\sqrt{y+6}-1}{3}\right)-5=y
$$

and $(\operatorname{gof})(x)=g\left(9 x^{2}+6 x-5\right)=\frac{\sqrt{9 x^{2}+6 x+1}-1}{3}=x$
$\therefore \mathrm{g}=\mathrm{f}^{-1}$
(i) $\mathrm{f}^{-1}(10)=\frac{\sqrt{16}-1}{3}=1$
(ii) $\mathrm{f}^{-1}(\mathrm{y})=\frac{4}{3} \Rightarrow \mathrm{y}=19$

OR

Note: Some short comings have been observed in this question which makes the question unsolvable.
So, 6 marks may be given for a genuine attempt.
$\mathrm{a}^{*} \mathrm{~b}=\mathrm{a}-\mathrm{b}+\mathrm{ab} \quad \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}=\mathrm{Q}-[1]$
$b^{*} \mathrm{a}=\mathrm{b}-\mathrm{a}+\mathrm{ba}$
$\left(\mathrm{a}^{*} \mathrm{~b}\right) \neq \mathrm{b} * \mathrm{a} \Rightarrow *$ is not commutative.
$(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=(\mathrm{a}-\mathrm{b}+\mathrm{ab}) * \mathrm{c}$
$=\mathrm{a}-\mathrm{b}-\mathrm{c}+\mathrm{ab}+\mathrm{ac}-\mathrm{bc}+\mathrm{abc}$
$a *(b * c)=a *(b-c+b c)$

$$
=\mathrm{a}-\mathrm{b}+\mathrm{c}+\mathrm{ab}-\mathrm{ac}-\mathrm{bc}+\mathrm{abc}
$$

$(\mathrm{a} * \mathrm{~b}) * \mathrm{c} \neq \mathrm{a} *(\mathrm{~b} * \mathrm{c})$
$\Rightarrow *$ is not associative.

Existence of identity
$a^{*} \mathrm{e}=\mathrm{a}-\mathrm{e}+\mathrm{ae}=\mathrm{a}$

$$
e^{*} \mathrm{a}=\mathrm{e}-\mathrm{a}+\mathrm{ea}=\mathrm{a}
$$

$\Rightarrow \mathrm{e}(\mathrm{a}-1)=0$
$\Rightarrow \mathrm{e}(1+\mathrm{a})=2 \mathrm{a}$
$\Rightarrow \mathrm{e}=0$
$\Rightarrow \mathrm{e}=\frac{2 \mathrm{a}}{1+\mathrm{a}}$
\because e is not unique
$\therefore \quad$ No idendity element exists.

$$
\mathrm{a} * \mathrm{~b}=\mathrm{e}=\mathrm{b} * \mathrm{a}
$$

$\therefore \quad$ No identity element exists.
\Rightarrow Inverse element does not exist.
26.

Given $\mathrm{x}+\mathrm{y}=\mathrm{k}$
Area of $\Delta=\frac{1}{2} \mathrm{x} \sqrt{\mathrm{y}^{2}-\mathrm{x}^{2}}$
Let $Z=\frac{1}{4} x^{2}\left(y^{2}-x^{2}\right)$
$=\frac{1}{4} x^{2}\left[(k-x)^{2}-x^{2}\right]$
$=\frac{1}{4}\left[\mathrm{k}^{2} \mathrm{x}^{2}-2 \mathrm{kx}{ }^{3}\right]$
$\frac{\mathrm{dz}}{\mathrm{dx}}=\frac{1}{4}\left[2 \mathrm{k}^{2} \mathrm{x}-6 \mathrm{kx}^{2}\right]=0 \Rightarrow \mathrm{k}-3 \mathrm{x}=0 \Rightarrow \mathrm{x}=\frac{\mathrm{k}}{3}$
$\Rightarrow \mathrm{x}+\mathrm{y}-3 \mathrm{x}=0$ or $\mathrm{y}=2 \mathrm{x}$
$\frac{\mathrm{d}^{2} \mathrm{z}}{\mathrm{dx}^{2}}=\frac{1}{4}\left[2 \mathrm{k}^{2}-12 \mathrm{kx}\right]$
$\left.\frac{\mathrm{d}^{2} \mathrm{z}}{\mathrm{dx}^{2}}\right|_{\mathrm{x}=\frac{\mathrm{k}}{3}}=\frac{1}{4}\left[2 \mathrm{k}^{2}-4 \mathrm{k}^{2}\right]=-\frac{\mathrm{k}^{2}}{2}<0$
\therefore Area will be maximum for $2 \mathrm{x}=\mathrm{y}$
but $\frac{x}{y}=\cos \theta \Rightarrow \cos \theta=\frac{x}{2 x}=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3}$
27.

Equation of $A B: y=\frac{3}{2} x+4$
Correct Figure:

Equation of BC; $y=4-\frac{x}{2}$
Equation of $A C ; y=\frac{1}{2} x+2$

$$
\begin{aligned}
\text { Required area } & =\int_{-2}^{0}\left(\frac{3}{2} x+4\right) d x+\int_{0}^{2}\left(4-\frac{x}{2}\right) d x-\int_{-2}^{2}\left(\frac{1}{2} x+2\right) d x \\
& =\left[\frac{3 x^{2}}{4}+4 x\right]_{-2}^{0}+\left[4 x-\frac{x^{2}}{4}\right]_{0}^{2}-\left[\frac{x^{2}}{4}+2 x\right]_{-2}^{2} \\
& =5+7-8 \\
& =4 \text { sq.units }
\end{aligned}
$$

OR

Note: In this problem, two regions are possible instead of a unique one, so full 6 marks may be given for finding the area of either region correctly.

Correct Figure

x-coordinate of points of intersection is $x= \pm 2 \sqrt{3}$
Required area

$$
\begin{aligned}
& =\int_{0}^{2 \sqrt{3}} \frac{x}{\sqrt{3}} \cdot d x+\int_{2 \sqrt{3}}^{4} \sqrt{4^{2}-x^{2}} d x \\
& =\left[\frac{x^{2}}{2 \sqrt{3}}\right]_{0}^{2 \sqrt{3}}+\left[\frac{x \sqrt{16-x^{2}}}{2}+8 \sin ^{-1} \frac{x}{4}\right]_{2 \sqrt{3}}^{4} \\
& =2 \sqrt{3}+8\left(\frac{\pi}{2}-\frac{\pi}{3}\right)-2 \sqrt{3} \\
& =\frac{4 \pi}{3} \text { sq.units }
\end{aligned}
$$

Alternate Solution

Correct figure
y -co-ordinate of point of intersection is $\mathrm{y}=2$
Required Area

$$
\begin{aligned}
& =\sqrt{3} \int_{0}^{2} y d x+\int_{2}^{4} \sqrt{(4)^{2}-y^{2}} d y \\
& =\sqrt{3}\left[\frac{y^{2}}{2}\right]_{0}^{2}+\left[\frac{\mathrm{y} \sqrt{16-y^{2}}}{2}+8 \sin ^{-1} \frac{\mathrm{y}}{4}\right]_{2}^{4} \\
& =2 \sqrt{3}+4 \pi-2 \sqrt{3}-\frac{4 \pi}{3} \\
& =\frac{8 \pi}{3} \text { sq.units }
\end{aligned}
$$

28. The given equation can be written as
$\frac{d y}{d x}+\frac{y}{x}=\cos x+\frac{\sin x}{x}$
I.F. $=e^{\int \frac{1}{x} d x}=e^{\log x}=x$
\therefore Solution is
$y \cdot x=\int(x \cos x+\sin x) d x+c$
$\Rightarrow y \cdot x=x \sin x+c$
or $y=\sin x+\frac{c}{x}$
when $\mathrm{x}=\frac{\pi}{2}, \mathrm{y}=1$, we get $\mathrm{c}=0$
Required solution is $y=\sin x$
29. Equation of family of planes

$$
\overrightarrow{\mathrm{r}} \cdot[(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}})]=1-4 \lambda
$$

$\Rightarrow \overrightarrow{\mathrm{r}} \cdot[(2+\lambda) \hat{\mathrm{i}}+(-3-\lambda) \hat{\mathrm{j}}+4 \hat{\mathrm{k}}]=1-4 \lambda$
plane (i) is perpendicular to
$\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})+8=0$
$2(2+\lambda)-1(-3-\lambda)+1(4)=0 \Rightarrow \lambda=-\frac{11}{3}$
Substituting $\lambda=-\frac{11}{3}$ in equation (i), we get
$\overrightarrow{\mathrm{r}} \cdot\left(-\frac{5}{3} \hat{\mathrm{i}}+\frac{2}{3} \hat{\mathrm{j}}+4 \hat{\mathrm{k}}\right)=\frac{47}{3}$
$\Rightarrow \overrightarrow{\mathrm{r}} \cdot(-5 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+12 \hat{\mathrm{k}})=47$ (vector equation)
or $-5 \mathrm{x}+2 \mathrm{y}+12 \mathrm{z}-47=0$ (cartesian equation)
(ii)

Line $\frac{x-1}{1}=\frac{y-2}{1 / 2}=\frac{z-4}{1 / 3}$ lies on the plane
\because (i) Point $\mathrm{P}(1,2,4)$ satisfies equation (ii)
and $\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=-5+1+4=0$
\Rightarrow Line is perpendicular to the normal of plane
\therefore Plane contains the given line

OR

Equation of line L_{1} passing through $(1,2,-4)$ is

$$
\frac{x-1}{a}=\frac{y-2}{b}=\frac{z+4}{c}
$$

$$
L_{2}: \frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}
$$

$$
L_{3}: \frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}
$$

$$
\because \mathrm{L}_{1} \perp \mathrm{~L}_{2} \Rightarrow 3 \mathrm{a}-16 \mathrm{~b}+7 \mathrm{c}=0
$$

$$
\mathrm{L}_{1} \perp \mathrm{~L}_{3} \Rightarrow 3 \mathrm{a}+8 \mathrm{~b}-5 \mathrm{c}=0
$$

Solving, we get
$\frac{\mathrm{a}}{24}=\frac{\mathrm{b}}{36}=\frac{\mathrm{c}}{72} \Rightarrow \frac{\mathrm{a}}{2}=\frac{\mathrm{b}}{3}=\frac{\mathrm{c}}{6}$
\therefore Required cartesian equation of line
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6}$
Vector equation

$$
\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})
$$

