## QUESTION PAPER CODE 65/2/1 EXPECTED ANSWER/VALUE POINTS

## SECTION A

1. $\left|\mathrm{A}^{\prime}\right||\mathrm{A}|=|\mathrm{II}| \Rightarrow|\mathrm{A}|^{2}=1$
$\therefore \quad|\mathrm{A}|=1$ or $|\mathrm{A}|=-1$
2. For $x<0, y=x|x|=-x^{2}$
$\therefore \quad \frac{d y}{d x}=-2 x$
3. Order $=2$, Degree not defined
4. D. Rs are $1,1,1$
$\therefore$ Direction cosines of the line are:

$$
\begin{equation*}
\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \tag{1}
\end{equation*}
$$

OR
Equation of the line is:

$$
\begin{equation*}
\frac{x-2}{1}=\frac{y+1}{1}=\frac{z-4}{-2} \tag{1}
\end{equation*}
$$

## SECTION B

5. $\forall \mathrm{a}, \mathrm{b} \in \mathbb{R}, \sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}} \in \mathbb{R}$
$\therefore *$ is a binary operation on $\mathbb{R}$
Also,

$$
\left.\left.\begin{array}{l}
\mathrm{a} *(\mathrm{~b} * \mathrm{c})=\mathrm{a} * \sqrt{\mathrm{~b}^{2}+\mathrm{c}^{2}}=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}} \\
(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}} * \mathrm{c}=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}
\end{array}\right\} \begin{array}{l}
\Rightarrow \mathrm{a} *(\mathrm{~b} * \mathrm{c})=(\mathrm{a} * \mathrm{~b}) * \mathrm{c} \\
\therefore * \text { is Associative }
\end{array}\right\}
$$

6. $(\mathrm{A}-2 \mathrm{I})(\mathrm{A}-3 \mathrm{I})=\left[\begin{array}{cc}2 & 2 \\ -1 & -1\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ -1 & -2\end{array}\right]$

$$
=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\mathrm{O}
$$

$$
=\frac{x+1}{2} \sqrt{3-2 x-x^{2}}+2 \sin ^{-1}\left(\frac{x+1}{2}\right)+c
$$

8. $\int \frac{\sin ^{3} \mathrm{x}+\cos ^{3} \mathrm{x}}{\sin ^{2} \mathrm{x} \cos ^{2} \mathrm{x}} \mathrm{dx}=\int(\sec \mathrm{x} \cdot \tan \mathrm{x}+\operatorname{cosec} \mathrm{x} \cdot \cot \mathrm{x}) \mathrm{dx}$

$$
=\sec x-\operatorname{cosec} x+c
$$

OR
,

$$
\left.\begin{array}{rl}
\int \frac{x-3}{(x-1)^{3}} e^{x} d x & =\int e^{x}\left\{(x-1)^{-2}-2(x-1)^{-3}\right\} d x  \tag{1}\\
& =e^{x}(x-1)^{-2}+c \\
o r \\
\frac{e^{x}}{(x-1)^{2}}+c
\end{array}\right\}
$$

9. Differentiating $y=\mathrm{Ae}^{2 \mathrm{x}}+\mathrm{Be}^{-2 \mathrm{x}}$, we get

$$
\begin{equation*}
\frac{d y}{d x}=2 \mathrm{Ae}^{2 \mathrm{x}}-2 \mathrm{Be}^{-2 \mathrm{x}} \text {, differentiate again to get, } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=4 \mathrm{Ae}^{2 x}+4 \mathrm{Be}^{-2 x}=4 y \text { or } \frac{d^{2} y}{{d x^{2}}^{2}}-4 y=0 \tag{1}
\end{equation*}
$$

10. Let $\theta$ be the angle between $\vec{a} \& \vec{b}$, then

$$
\begin{aligned}
& \sin \theta=\frac{|\vec{a} \times \vec{b}|}{|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}|}=\frac{7}{2.7}=\frac{1}{2} \\
\Rightarrow & \theta=\frac{\pi}{6} \text { or } \frac{5 \pi}{6}
\end{aligned}
$$

OR
$(-3 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}) \cdot\{(-5 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}) \times(7 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})\}=\left|\begin{array}{rrr}-3 & 7 & 5 \\ -5 & 7 & -3 \\ 7 & -5 & -3\end{array}\right|$ $=-264$
11. $P(\bar{A})=0.7 \Rightarrow 1-P(A)=0.7 \Rightarrow P(A)=0.3$
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B} \mid \mathrm{A})=0.3 \times 0.5=0.15$
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{0.15}{0.7}=\frac{15}{70}$ or $\frac{3}{14}$
12. (i) $\mathrm{P}(3$ heads $)={ }^{5} \mathrm{C}_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{2}=\frac{5}{16}$
(ii) $\mathrm{P}($ At most 3 heads $)=\mathrm{P}(\mathrm{r} \leq 3)$

$$
\begin{aligned}
& =1-\mathrm{P}(4 \text { heads or } 5 \text { heads }) \\
& =1-\left\{{ }^{5} \mathrm{C}_{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)+{ }^{5} \mathrm{C}_{5}\left(\frac{1}{2}\right)^{5}\right\} \\
& =\frac{26}{32} \text { or } \frac{13}{16}
\end{aligned}
$$

OR
$\mathrm{X}=$ No. of heads in simultaneous toss of two coins.

| $\mathrm{X}:$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $\mathrm{P}(\mathrm{x}):$ | $1 / 4$ | $1 / 2$ | $1 / 4$ |

## SECTION C

13. $R=\{(1,2),(2,3),(3,4),(4,5),(5,6)\}$

For $1 \in A,(1,1) \notin R \Rightarrow R$ is not reflexive

For $1,2 \in A,(1,2) \in R$ but $(2,1) \notin R \Rightarrow R$ is not symmetric

For $1,2,3 \in A,(1,2),(2,3) \in R$ but $(1,3) \notin R \Rightarrow R$ is not transitive

OR
One-One: Let for $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{~N}, \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right) \Rightarrow 4 \mathrm{x}_{1}+3=4 \mathrm{x}_{2}+3 \Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$
$\therefore \quad$ ' f ' is one-one
Onto: co-domain of $f=$ Range of $f=Y$
$\therefore \quad$ ' f ' is onto
$\therefore \mathrm{f}$ is invertible with, $\mathrm{f}^{-1}: \mathrm{Y} \rightarrow \mathrm{N}$ and $\mathrm{f}^{-1}(\mathrm{y})=\frac{\mathrm{y}-3}{4}$ or $\mathrm{f}^{-1}(\mathrm{x})=\frac{\mathrm{x}-3}{4}, \mathrm{x} \in \mathrm{Y}$
14. $\sin \left[\cos ^{-1}\left(\frac{4}{5}\right)+\tan ^{-1}\left(\frac{2}{3}\right)\right]$

$$
=\sin \left[\tan ^{-1}\left(\frac{3}{4}\right)+\tan ^{-1}\left(\frac{2}{3}\right)\right]
$$



$$
=\sin \left[\sin ^{-1}\left(\frac{17}{\sqrt{325}}\right)\right]=\frac{17}{\sqrt{325}}
$$

$$
=\sin \left[\tan ^{-1}\left(\frac{3 / 4+2 / 3}{1-3 / 4 \cdot 2 / 3}\right)\right]=\sin \left[\tan ^{-1}\left(\frac{17}{6}\right)\right]
$$

15. $\left|\begin{array}{ccc}3 a & -a+b & -a+c \\ -b+a & 3 b & -b+c \\ -c+a & -c+b & 3 c\end{array}\right|$

$$
=\left|\begin{array}{ccc}
a+b+c & -a+b & -a+c \\
a+b+c & 3 b & -b+c \\
a+b+c & -c+b & 3 c
\end{array}\right|\binom{\text { By applying, }}{C_{1} \rightarrow C_{1}+C_{2}+C_{3}}
$$

$$
=\left|\begin{array}{ccc}
a+b+c & -a+b & -a+c \\
0 & 2 b+a & a-b \\
0 & a-c & 2 c+a
\end{array}\right|\left\{\begin{array}{l}
\text { By applying } \\
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array}\right.
$$

$$
=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left\{4 \mathrm{bc}+2 \mathrm{ab}+2 \mathrm{ac}+\mathrm{a}^{2}-\left(\mathrm{a}^{2}-\mathrm{ac}-\mathrm{ba}+\mathrm{bc}\right)\right\}
$$

$$
=3(a+b+c)(a b+b c+c a)
$$

16. $x \sqrt{1+y}+y \sqrt{1+x}=0 \Rightarrow x \sqrt{1+y}=-y \sqrt{1+x}$

Squaring to get: $x^{2}(1+y)=y^{2}(1+x)$
Simplifying to get: $(x-y)(x+y+x y)=0$

$$
\begin{equation*}
\text { As, } \mathrm{x} \neq \mathrm{y} \quad \therefore \quad \mathrm{y}=-\frac{\mathrm{x}}{1+\mathrm{x}} \tag{1}
\end{equation*}
$$

Differentiating w.r.t. ' $x$ ', we get:

$$
\begin{equation*}
\frac{d y}{d x}=\frac{-1(1+x)-(-x) \cdot 1}{(1+x)^{2}}=\frac{-1}{(1+x)^{2}} \tag{1}
\end{equation*}
$$

OR

$$
\begin{equation*}
(\cos x)^{y}=(\sin y)^{x} \Rightarrow y \cdot \log (\cos x)=x \cdot \log (\sin y) \tag{1}
\end{equation*}
$$

Differentiating w.r.t ' x '
$\Rightarrow \frac{d y}{d x} \cdot \log (\cos x)+y(-\tan x)=\log (\sin y)+x \cdot \cot y \cdot \frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}=\frac{y \cdot \tan x+\log (\sin y)}{\log (\cos x)-x \cot y}$
17. $(x-a)^{2}+(y-b)^{2}=c^{2}, c>0$

Differentiating both sides with respect to ' $x$ ', we get

$$
2(x-a)+2(y-b) \cdot \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=-\frac{x-a}{y-b}
$$

Differentiating again with respect to ' $x$ ', we get;

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=-\frac{(y-b)-(x-a) \cdot \frac{d y}{d x}}{(y-b)^{2}}=\frac{-c^{2}}{(y-b)^{3}} \quad\left(\text { By substituting } \cdot \frac{d y}{d x}\right) \\
& \frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}}{\frac{d^{2} y}{d x^{2}}}=\frac{\left[1+\frac{(x-a)^{2}}{(y-b)^{2}}\right]^{3 / 2}}{-\frac{c^{2}}{(y-b)^{3}}}=\frac{\frac{c^{3}}{(y-b)^{3}}}{-\frac{c^{2}}{(y-b)^{3}}}=-c
\end{aligned}
$$

Which is a constant independent of ' $a$ ' \& ' $b$ '.
18. Let $(\alpha, \beta)$ be the point on the curve where normal
passes through $(-1,4) \therefore \alpha^{2}=4 \beta$, also $\frac{d y}{d x}=\frac{x}{2}$

Slope of normal at $(\alpha, \beta)=\frac{-1}{\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right]_{(\alpha, \beta)}}=\frac{-1}{\frac{\alpha}{2}}=\frac{-2}{\alpha}$
$(\alpha, \beta)$ lies on the normal $\Rightarrow \beta-4=\frac{-2}{\alpha}(\alpha+1)$
Putting $\beta=\frac{\alpha^{2}}{4}$, we get; $\alpha^{3}-8 \alpha+8=0 \Rightarrow(\alpha-2)\left(\alpha^{2}+2 \alpha-4\right)=0$
For $\alpha=2$ Equation of normal is: $\mathrm{x}+\mathrm{y}-3=0$
For $\alpha= \pm \sqrt{5}-1$; Equation of normal is: $y-4=\frac{-2}{ \pm \sqrt{5}-1}(x+1)$
19. $\int \frac{\mathrm{x}^{2}+\mathrm{x}+1}{(\mathrm{x}+2)\left(\mathrm{x}^{2}+1\right)} \mathrm{dx}=\frac{3}{5} \int \frac{1}{\mathrm{x}+2} \mathrm{dx}+\frac{1}{5} \int \frac{2 \mathrm{x}}{\mathrm{x}^{2}+1} \mathrm{dx}+\frac{1}{5} \int \frac{1}{\mathrm{x}^{2}+1} \mathrm{dx}$

$$
\begin{equation*}
=\frac{3}{5} \log |x+2|+\frac{1}{5} \log \left|x^{2}+1\right|+\frac{1}{5} \tan ^{-1} x+c \tag{2}
\end{equation*}
$$

20. $\int_{0}^{a} f(x) d x=-\int_{a}^{0} f(a-t) d x \quad$ Put $x=a-t, d x=-d t$

$$
\text { Upper limit }=\mathrm{t}=\mathrm{a}-\mathrm{x}=\mathrm{a}-\mathrm{a}=0
$$

Lower limit $=\mathrm{t}=\mathrm{a}-\mathrm{x}=\mathrm{a}-0=\mathrm{a}$

$$
=\int_{0}^{a} f(a-t) d t=\int_{0}^{a} f(a-x) d x
$$

Let $I=\int_{0}^{\pi / 2} \frac{x}{\sin x+\cos x} d x$
$\Rightarrow I=\int_{0}^{\pi / 2} \frac{\pi / 2-x}{\sin \left(\frac{\pi}{2}-x\right)+\cos \left(\frac{\pi}{2}-x\right)} d x$
$\therefore \mathrm{I}=\int_{0}^{\pi / 2} \frac{\pi / 2-\mathrm{x}}{\cos \mathrm{x}+\sin \mathrm{x}} \mathrm{dx}$

Adding, (i) and (ii) we get

$$
\begin{aligned}
2 I & =\frac{\pi}{2} \int_{0}^{\pi / 2} \frac{1}{\cos x+\sin x} d x=\frac{\pi}{2 \sqrt{2}} \int_{0}^{\pi / 2} \frac{1}{\cos \left(x-\frac{\pi}{4}\right)} d x \\
& =\frac{\pi}{2 \sqrt{2}} \int_{0}^{\pi / 2} \sec \left(x-\frac{\pi}{4}\right) d x \\
\Rightarrow 2 I & =\frac{\pi}{2 \sqrt{2}}\left\{\log \left|\sec \left(x-\frac{\pi}{4}\right)+\tan \left(x-\frac{\pi}{4}\right)\right|\right\}_{0}^{\frac{\pi}{2}} \\
& =\frac{\pi}{2 \sqrt{2}}\{\log (\sqrt{2}+1)-\log (\sqrt{2}-1)\} \\
\Rightarrow I & =\frac{\pi}{4 \sqrt{2}}\{\log (\sqrt{2}+1)-\log (\sqrt{2}-1)\} \text { or } \frac{\pi}{4 \sqrt{2}} \log \left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)
\end{aligned}
$$

21. The given differential equation can be written as:

$$
\frac{d y}{d x}=\frac{y}{x}-\tan \left(\frac{y}{x}\right)
$$

Put $\frac{y}{x}=v$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$, to get

$$
v+x \frac{d v}{d x}=v-\tan v \Rightarrow x \frac{d v}{d x}=-\tan v
$$

$\Rightarrow \cot \mathrm{vdv}=-\frac{1}{\mathrm{x}} \mathrm{dx}$,
Integrating both sides we get,

$$
\begin{aligned}
& \log |\sin \mathrm{v}|=-\log |\mathrm{x}|+\log \mathrm{c} \\
\Rightarrow & \log |\sin \mathrm{v}|=\log \left|\frac{\mathrm{c}}{\mathrm{x}}\right|
\end{aligned}
$$

$\therefore \quad$ Solution of differential equation is

$$
\sin \left(\frac{y}{x}\right)=\frac{c}{x} \text { or } x \cdot \sin \left(\frac{y}{x}\right)=c
$$

OR
The given differential equation can be written as:

$$
\begin{aligned}
& \frac{d y}{d x}+\frac{\cos x}{1+\sin x} \cdot y=\frac{-x}{1+\sin x} \\
& \text { I.F. }=e^{\int \frac{\cos x}{1+\sin x} d x}=e^{\log (1+\sin x)}=1+\sin x
\end{aligned}
$$

$\therefore$ Solution of the given differential equation is:

$$
\begin{aligned}
& y(1+\sin x)=\int \frac{-x}{1+\sin x} \times(1+\sin x) d x+c \\
& \Rightarrow y(1+\sin x)= \frac{-x^{2}}{2}+c \text { or } y=\frac{-x^{2}}{2(1+\sin x)}+\frac{c}{1+\sin x}
\end{aligned}
$$

22. $\vec{a} \cdot \frac{(\vec{b}+\vec{c})}{|\vec{b}+\vec{c}|}=1$
$\Rightarrow(\hat{i}+\hat{\mathrm{j}}+\hat{\mathrm{k}}) \cdot\{(2+\lambda) \hat{\mathrm{i}}+6 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}\}=\sqrt{(2+\lambda)^{2}+36+4}$
$\Rightarrow \lambda+6=\sqrt{(2+\lambda)^{2}+40}$
Squaring to get

$$
\lambda^{2}+12 \lambda+36=\lambda^{2}+4 \lambda+44 \Rightarrow \lambda=1
$$

$\therefore \quad$ Unit vector along $(\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}})$ is $\frac{3}{7} \hat{\mathrm{i}}+\frac{6}{7} \hat{\mathrm{j}}-\frac{2}{7} \hat{\mathrm{k}}$
23. Lines are perpendicular

$$
\begin{aligned}
\therefore & -3(3 \lambda)+2 \lambda(2)+2(-5)=0 \Rightarrow \lambda=-2 \\
& \left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-\mathrm{z}_{1} \\
\mathrm{a}_{1} & \mathrm{~b}_{1} & \mathrm{c}_{1} \\
\mathrm{a}_{2} & \mathrm{~b}_{2} & \mathrm{c}_{3}
\end{array}\right|=\left|\begin{array}{ccc}
1-1 & 1-2 & 6-3 \\
-3 & 2(-2) & 2 \\
3(-2) & 2 & -5
\end{array}\right|=-63 \neq 0
\end{aligned}
$$

$\therefore \quad$ Lines are not intersecting

## SECTION D

24. $|\mathrm{A}|=11 ; \operatorname{Adj}(\mathrm{A})=\left[\begin{array}{ccc}-1 & 1 & 2 \\ 8 & -19 & 6 \\ -3 & 14 & -5\end{array}\right]$
$\therefore \quad \mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \cdot \operatorname{Adj} \mathrm{A}=\frac{1}{11}\left[\begin{array}{ccc}-1 & 1 & 2 \\ 8 & -19 & 6 \\ -3 & 14 & -5\end{array}\right]$
Taking; $\mathrm{X}=\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right] ; \mathrm{B}=\left[\begin{array}{l}8 \\ 5 \\ 7\end{array}\right]$
The system of equations in matrix form is

$$
\mathrm{A} \cdot \mathrm{X}=\mathrm{B} \quad \therefore \mathrm{X}=\mathrm{A}^{-1} \cdot \mathrm{~B}
$$

$\therefore$ Solution is:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\frac{1}{11}\left[\begin{array}{ccc}
-1 & 1 & 2 \\
8 & -19 & 6 \\
-3 & 14 & -5
\end{array}\right]\left[\begin{array}{l}
8 \\
5 \\
7
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]} \\
& \therefore \quad x=1, y=1, \mathrm{z}=1
\end{aligned}
$$

## OR

We know: A = IA

$$
\Rightarrow\left[\begin{array}{rrr}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \mathrm{A}
$$

$$
\begin{aligned}
& \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1} \\
& \Rightarrow\left[\begin{array}{ccc}
2 & 0 & -1 \\
1 & 1 & 2 \\
0 & 1 & 3
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \mathrm{A} \\
& \mathrm{R}_{1} \leftrightarrow \mathrm{R}_{2} \\
& \Rightarrow\left[\begin{array}{ccc}
1 & 1 & 2 \\
2 & 0 & -1 \\
0 & 1 & 3
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \mathrm{A} \\
& \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1} \\
& \Rightarrow\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & -2 & -5 \\
0 & 1 & 3
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
5 & -2 & 0 \\
0 & 0 & 1
\end{array}\right] \mathrm{A} \\
& \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+2 \mathrm{R}_{3} \\
& \Rightarrow\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 0 & 1 \\
0 & 1 & 3
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
5 & -2 & 2 \\
0 & 0 & 1
\end{array}\right] \mathrm{A} \\
& \mathrm{R}_{2} \leftrightarrow \mathrm{R}_{3} \\
& \Rightarrow\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & 0 & 1 \\
5 & -2 & 2
\end{array}\right] \mathrm{A} \\
& \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-3 \mathrm{R}_{3} \\
& \Rightarrow\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
-15 & 6 & -5 \\
5 & -2 & 2
\end{array}\right] \mathrm{A} \\
& R_{1} \rightarrow R_{1}-R_{2}-2 R_{3} \\
& \Rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
3 & -1 & 1 \\
-15 & 6 & -5 \\
5 & -2 & 2
\end{array}\right] \mathrm{A} \\
& \therefore \quad A^{-1}=\left[\begin{array}{ccc}
3 & -1 & 1 \\
-15 & 6 & -5 \\
5 & -2 & 2
\end{array}\right]
\end{aligned}
$$

25. 


ln rt. $\Delta \mathrm{ABC} ; 4 \mathrm{x}^{2}+\mathrm{h}^{2}=4 \mathrm{R}^{2}, \mathrm{x}^{2}=\frac{4 \mathrm{R}^{2}-\mathrm{h}^{2}}{4}$
$\mathrm{V}($ Volume of cylinder $)=\pi \mathrm{x}^{2} \mathrm{~h}=\frac{\pi}{4}\left(4 \mathrm{R}^{2} \mathrm{~h}-\mathrm{h}^{3}\right)$
$\mathrm{V}^{\prime}(\mathrm{h})=\frac{\pi}{4}\left(4 \mathrm{R}^{2}-3 \mathrm{~h}^{2}\right) ; \mathrm{V}^{\prime \prime}(\mathrm{h})=\frac{\pi}{4}(-6 \mathrm{~h}) \quad \frac{1}{2}+\frac{1}{2}$
$\mathrm{V}^{\prime}(\mathrm{h})=0 \Rightarrow \mathrm{~h}=\frac{2 \mathrm{R}}{\sqrt{3}}$
$\mathrm{V}^{\prime \prime}\left(\frac{2 \mathrm{R}}{\sqrt{3}}\right)=\frac{-6 \pi}{4}\left(\frac{2 \mathrm{R}}{\sqrt{3}}\right)<0 \Rightarrow$ Volume ' $\mathrm{V}^{\prime}$ ' is max.

$$
\text { for } h=\frac{2 R}{\sqrt{3}}
$$

Max. Volume: $V=\frac{4}{3 \sqrt{3}} \pi R^{3}$
26.

Correct Figure
$\left.\begin{array}{l}\text { Equation of line } \mathrm{AB}: \mathrm{y}=2(\mathrm{x}-1) \\ \text { Equation of line } \mathrm{BC}: \mathrm{y}=4-\mathrm{x}\end{array}\right\} \quad 1 \frac{1}{2}$
Equation of line $\mathrm{AC}: \mathrm{y}=\frac{1}{2}(\mathrm{x}-1)$
$\operatorname{ar}(\Delta \mathrm{ABC})=2 \int_{1}^{2}(\mathrm{x}-1) \mathrm{dx}+\int_{2}^{3}(4-\mathrm{x}) \mathrm{dx}-\frac{1}{2} \int_{1}^{3}(\mathrm{x}-1) \mathrm{dx} \quad 1 \frac{1}{2}$
$\left.\left.\left.=(x-1)^{2}\right]_{1}^{2}-\frac{1}{2}(4-x)^{2}\right]_{2}^{3}-\frac{1}{4}(x-1)^{2}\right]_{1}^{3}$
$=1+\frac{3}{2}-1=\frac{3}{2}$


## OR



Getting the point of intersection as $\mathrm{x}=1$
Area $(\mathrm{OABCO})=4 \times \operatorname{ar}(\mathrm{ABD})$
$=4 \int_{1}^{2} \sqrt{2^{2}-x^{2}} d x$
$=4\left\{\frac{x \sqrt{4-x^{2}}}{2}+2 \sin ^{-1}\left(\frac{x}{2}\right)\right\}_{1}^{2}$

$$
=\left(\frac{8 \pi}{3}-2 \sqrt{3}\right)
$$

27. Let $\vec{a}=\hat{i}+\hat{j}-2 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j}+\hat{k}$

$$
(\vec{b}-\vec{a}) \times(\vec{c}-\vec{a})=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -2 & 3 \\
0 & 1 & 3
\end{array}\right|=-9 \hat{i}-3 \hat{j}+\hat{k}
$$

Vector equation of plane is:

$$
\begin{align*}
& \{\overrightarrow{\mathrm{r}}-(\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})\} \cdot(-9 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+\hat{\mathrm{k}})=0 \\
\Rightarrow & \overrightarrow{\mathrm{r}} \cdot(-9 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+\hat{\mathrm{k}})+14=0 \tag{1}
\end{align*}
$$

Cartesian Equation of plane is: $-9 x-3 y+z+14=0$
Equation of plane through $(2,3,7)$ and parallel to above plane is:

$$
\begin{aligned}
& -9(\mathrm{x}-2)-3(\mathrm{y}-3)+(\mathrm{z}-7)=0 \\
\Rightarrow & -9 \mathrm{x}-3 \mathrm{y}+\mathrm{z}+20=0
\end{aligned}
$$

Distance between parallel planes $=\left|\frac{-14+20}{\sqrt{91}}\right|=\frac{6}{\sqrt{91}}$

## OR

Equation of line: $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{2}$

General point on line: $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{2}$
is: $\mathrm{P}(3 \mathrm{k}+2,4 \mathrm{k}-1,2 \mathrm{k}+2)$; Putting in the equation of plane
we get, $3 \mathrm{k}+2-4 \mathrm{k}+1+2 \mathrm{k}+2=5 \Rightarrow \mathrm{k}=0$
$\therefore \quad$ Point of intersection is: $(2,-1,2)$
28. Let $\mathrm{E}_{1}=$ Event that two-headed coin is chosen
$\mathrm{E}_{2}=$ Event that biased coin is chosen
$\mathrm{E}_{3}=$ Event that unbiased coin is chosen
A = Event that coin tossed shows head
Then, $\mathrm{P}\left(\mathrm{E}_{1}\right)=\mathrm{P}\left(\mathrm{E}_{2}\right)=\mathrm{P}\left(\mathrm{E}_{3}\right)=1 / 3$

$$
\begin{equation*}
\mathrm{P}\left(\mathrm{~A}_{1}\right)=1, \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)=\frac{75}{100}=\frac{3}{4}, \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{3}\right)=\frac{1}{2} \tag{1}
\end{equation*}
$$

$$
\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{A}\right)=\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)+\mathrm{P}\left(\mathrm{E}_{3}\right) \cdot \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{3}\right)}
$$

$$
=\frac{\frac{1}{3} \cdot 1}{\frac{1}{3} \cdot 1+\frac{1}{3} \cdot \frac{3}{4}+\frac{1}{3} \cdot \frac{1}{2}}=\frac{4}{9}
$$

29. 


let the company produce: Goods $\mathrm{A}=\mathrm{x}$ units

$$
\text { Goods } \mathrm{B}=\mathrm{y} \text { units }
$$

then, the linear programming problem is:

Maximize profit: $\mathrm{z}=40 \mathrm{x}+50 \mathrm{y}$ (In ₹)
Subject to constraints:
$\left.\begin{array}{l}3 x+y \leq 9 \\ x+2 y \leq 8 \\ x, y \geq 0\end{array}\right\}$ $2 \frac{1}{2}$

Correct graph:
2

| Corner point | Value of $\mathrm{z}(₹)$ |
| :---: | :---: |
| $\mathrm{A}(0,4)$ | 200 |
| $\mathrm{~B}(2,3)$ | $230(\operatorname{Max})$ |

$\therefore$ Maximum profit $=₹ 230$ at:
Goods A produced $=2$ units, Goods B produced $=3$ units $\quad \frac{1}{2}$

