SAMPLE QUESTION PAPER

Summative Assessment - II
Class - X (2015-16)
Mathematics - Marking Scheme

Section A

Ans 1. $K=3$ [1]
Ans 2. $\sqrt{200}$
Ans 3. -

Ans 4. $a=-9$

Section B

Ans 5.

2 is the root of $x^{2}+k x+12=0$
$\Rightarrow(2)^{2}+2 \mathrm{k}+12=0$
$\Rightarrow 2 \mathrm{k}+16=0$

$$
\begin{equation*}
k=-8 \tag{1/2}
\end{equation*}
$$

Put $k=-8$ in $x^{2}+k x+q=0$
$\Rightarrow \mathrm{x}^{2}-8 \mathrm{x}+\mathrm{q}=0$

For equal roots
$(-8)^{2}-4(1) q=0$
$64-4 q=0$
$4 q=64$
$q=16$

Ans 6.

Two digit numbers which are divisible by 7 are

$$
\begin{equation*}
14,21,28, \ldots \ldots .98 \tag{1/2}
\end{equation*}
$$

It forms an A.P.

$$
\begin{align*}
& a=14, d=7, a_{n}=98 \\
& a_{n}=a+(n-1) d \\
& 98=14+(n-1) 7 \\
& 98-14=7 n-7 \\
& 84+7=7 n \\
& 7 n=91 \\
& n=13
\end{align*}
$$

Ans 7

Let $P(x, y)$ is equidistant from $A(-5,3)$ and $B(7,2)$
$A P=B P$
$\Rightarrow \sqrt{\left((x+5)^{2}+(y-3)^{2}\right)}=\sqrt{\left((x-7)^{2}+(y-2)^{2}\right)}$
$\Rightarrow x^{2}+10 x+25+y^{2}-6 y+9=x^{2}-14 x+49+y^{2}-4 y+4$
$10 x-6 y+34=-14 x-4 y+53$
$10 x+14 x-6 y+4 y=53-34$
$24 x-2 y=19$
$24 x-2 y-19=0$ is the required relation
[1]

Ans 8

Perimeter of the shaded region
$=A D+B C+$ lengths of semi circles $A P B \& C P D$
$=21+21+2(2 x-x-)$
$=42+2(66)$
$=42+132$
$=174 \mathrm{~cm}$
[1/2]

Ans 9

Let the water level raised in cylindrical vessel be h cm
Volume of Sphere $=$ Volume of water displaced in cylinder
$-\pi(3)^{3}=\pi(6)^{2} h$
$-x 27=36 \mathrm{~h}$
$36=36 h$
$h=1 \mathrm{~cm}$
Ans 10
Volume of Coin $=\pi r^{2} h$
$=\frac{22}{-} \times(0.75)^{2} \times 0.2 \mathrm{~cm}^{3}$
Volume of Cylinder $=\frac{22}{-} \times(2.25)^{2} \times 10 \mathrm{~cm}^{3}$
No. of Coins = Volume of Cylinder / Volume of Coin
$=\left({ }^{22} \times(2.25)^{2} \times 10\right) /\left({ }^{22} \times(0.75)^{2} \times 0.2\right)$
$=450$

Section C

Ans 11

Ans 12

$$
=
$$

$$
\begin{equation*}
a_{n}=S_{n}-S_{n-1} \tag{1}
\end{equation*}
$$

$$
\Rightarrow \mathrm{a}_{25}=\mathrm{S}_{25}-\mathrm{S}_{24}
$$

$$
=\square-\square
$$

$\left.=-13\left(25^{2}-24^{2}\right)+13(25-24)\right\}$

$$
=-(3 \times 49+13)=80
$$

$$
\begin{aligned}
& \longrightarrow=-+-+- \\
& \Rightarrow-\quad-\quad=+- \\
& \Rightarrow \longrightarrow=\square \\
& \Rightarrow \square=\square \\
& \Rightarrow \longrightarrow \text { —— } \\
& \Rightarrow \quad x(a+b+x)=-a b \\
& \Rightarrow \mathrm{x}^{2}+(\mathrm{a}+\mathrm{b}) \mathrm{x}-\mathrm{ab}=0 \\
& \Rightarrow(x+a)(x+b)=0 \\
& \Rightarrow \mathrm{x}=-\mathrm{a} \text { or } \mathrm{x}=-\mathrm{b}
\end{aligned}
$$

Ans 13

Let the first term of A.P be a and common difference be d.

$$
\begin{align*}
& a_{9}=7 a_{2} \\
& \Rightarrow a+8 d=7(a+d) \tag{1}
\end{align*}
$$

[1/2]
$a_{12}=5 a_{3}+2$
$\Rightarrow a+11 d=5(a+2 d)+2$
[1]
From (1), $a+8 d=7 a+7 d$
$-6 a+d=0$
From (2), $a+11 d=5 a+10 d+2$
$-4 a+d=2$
Subtracting (4) from (3)
$-2 \mathrm{a}=-2$
$\Rightarrow \mathrm{a}=1$
From (3),
$-6+d=0$
$d=6$
Ans 14

Join OD and AE
$\angle \mathrm{ODB}=90^{\circ}$ \qquad (radius is perpendicular to tangent at
point of contact)
$\angle A E B=90^{\circ} \ldots \ldots \ldots \ldots \ldots .$. (angle in a semicircle)

$A E=2 \times O D$
$=2 \times 8=16 \mathrm{~cm}$
In right $\Delta \mathrm{ODB}, \mathrm{BD}^{2}=13^{2}-8^{2}$
$=169-64=105$
$B D=\sqrt{ } 105 \mathrm{~cm}$
$D E=\sqrt{ } 105 \mathrm{~cm}$
In right $\triangle A E D, A D^{2}=A E^{2}+D E^{2}$
$=16^{2}+(\sqrt{ } 105)^{2}$
$=256+105=361$
$A D=19 \mathrm{~cm}$
Ans15

[1/2]
In right $\triangle \mathrm{PQR}$, by Pythagoras theorem

$$
\mathrm{PQ}^{2}=\mathrm{PR}^{2}+\mathrm{PQ}^{2}
$$

$$
\begin{aligned}
& \Rightarrow 17^{2}=(x+9)^{2}+(x+2)^{2} \\
& \Rightarrow x^{2}+11 x-102=0 \\
& \Rightarrow x^{2}+17 x-6 x-102=0 \\
& \Rightarrow x(x+17)-6(x+17)=0 \\
& \Rightarrow(x-6)(x+17)=0 \\
& \Rightarrow x=6 \text { or } x=-17 \\
& \Rightarrow x=6 \mathrm{~cm} \quad(x \text { can't be negative })
\end{aligned}
$$

Ans 16

For correct construction

Ans 17

Total number of cards $=52$
Number of non face cards $=52-12$

$$
\begin{equation*}
=40 \tag{1}
\end{equation*}
$$

$P($ non-face cards $)=\frac{40}{52}=\frac{10}{13}$
Number of black kings = 2
Number of red queens = 2
$P($ a black King or a red queen $)=\frac{4}{52}$
Number of spade cards $=13$
$P($ Spade cards $)=\frac{13}{52}$

$\angle A O B=60^{\circ}$
Area of shaded region

$$
\begin{align*}
& =\text { Area of } \triangle \mathrm{AOB}+\text { Area of major sector of circle } \tag{1}\\
& =\frac{\sqrt{3}}{4}(12)^{2}+\frac{300^{0}}{360^{0}} \times \frac{22}{7} \times(6)^{2} \mathrm{~cm}^{2} \tag{1}\\
& =36 \sqrt{3}+\frac{660}{7} \mathrm{~cm}^{2} \tag{1/2}
\end{align*}
$$

Ans 19

Length of water that flows out in 30 minutes

$$
\begin{align*}
& =(0.7 \times 100 \times 60 \times 30) \mathrm{cm} \\
& =126000 \mathrm{~cm} \tag{1}
\end{align*}
$$

Volume of water that flows out in 30 minutes

$$
\begin{align*}
& =\pi(1)^{2} \times 126000 \mathrm{~cm}^{3} \\
& =126000 \pi \mathrm{~cm}^{3} \tag{1/2}
\end{align*}
$$

Let the depth of water in the tank be $\times \mathrm{cm}$
Volume of water in tank

$$
\begin{equation*}
=\pi(40)^{2} \mathrm{X} \times \mathrm{cm}^{3} \tag{1/2}
\end{equation*}
$$

According to the question
$\pi(40)^{2} X x=126000 \pi$
$\Rightarrow x=78.75 \mathrm{~cm}$
Ans 20

Let R and r be the radii of the circular ends of the frustum. ($R>r$)

$$
\begin{align*}
2 \pi R & =207.24 \\
R & =207.24 /(2 \times 3.14) \\
R & =33 \mathrm{~cm} \tag{1}\\
2 \pi r & =169.56 \mathrm{~cm} \\
r & =169.56 /(2 \times 3.14) \\
r & =27 \mathrm{~cm} \tag{1/2}\\
I^{2} & =h^{2}+(R-r)^{2} \\
& =8^{2}+(33-27)^{2} \tag{1/2}\\
I & =10 \mathrm{~cm} \tag{1/2}
\end{align*}
$$

Whole surface area of the frustum

$$
\begin{align*}
& =\pi\left(R^{2}+r^{2}+(R+r) I\right) \\
& =3.14\left((33)^{2}+(27)^{2}+(33+27) 10\right) \tag{1/2}\\
& =3.14(1089+729+600) \\
& =3.14 \times 2418 \mathrm{~cm}^{2} \\
& =7592.52 \mathrm{~cm}^{2}[1]
\end{align*}
$$

Section D

Ans 21

Let the total number of students be x
$\frac{3}{8} x=16+\sqrt{ } x$
$\Rightarrow \frac{3}{8} \mathrm{x}-16=\sqrt{ } \mathrm{x}$
$\Rightarrow 3 \mathrm{x}-128=8 \sqrt{ } \mathrm{x}$

$$
\begin{equation*}
\Rightarrow 3 x-8 \sqrt{x}-128=0 \tag{1/2}
\end{equation*}
$$

Let $\sqrt{ } \mathrm{x}=\mathrm{y}$

$$
\begin{gather*}
3 y^{2}-8 y-128=0 \tag{1/2}\\
\Rightarrow 3 y^{2}-24 y+16 y-128=0 \\
\Rightarrow 3 y(y-8)+16(y-8)=0 \\
\Rightarrow(y-8)(3 y+16)=0 \\
y=8 \text { or } y=-16 / 3 \\
y=8 \Rightarrow x=64 \\
y=-16 / 3 \Rightarrow x=256 / 9
\end{gather*}
$$

number of students $=64$
Values inculcated

Ans 22

$$
\begin{align*}
& \quad a=8, d=1 / 3 \text { years, } S_{n}=168 \tag{1/2}\\
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& \Rightarrow 168=\frac{n}{2}\left[2(8)+(n-1) \frac{1}{3}\right] \tag{1/2}\\
& \quad n^{2}+47 n-1008=0 \tag{1}\\
& \Rightarrow n^{2}+63 n-16 n-1008=0 \\
& \Rightarrow \\
& \Rightarrow(n-16)(n+63)=0 \\
& \Rightarrow \\
& n=16 \text { or } n=-63
\end{align*}
$$

$$
\mathrm{n}=16 \quad \text { (} \mathrm{n} \text { cannot be negative) }
$$

Age of the eldest participant $=a+15 d=13$ years

Ans 23

In the given figure,
Using the above theorem

$$
\begin{align*}
& \mathrm{AP}=\mathrm{AS} \ldots \tag{1}\\
& \mathrm{BP}=\mathrm{BQ} \ldots \tag{2}\\
& \mathrm{DR}=\mathrm{DS} \ldots \tag{3}\\
& \mathrm{CR}=\mathrm{CQ} \ldots \tag{4}
\end{align*}
$$

Adding (1), (2),(3) and (4), we get
$(A B+B P)+(D R+C R)=(A S+D S)+(B Q+C Q)$
$\Rightarrow A B+C D=A D+B C$
Ans 24
For correct constructions

Correct diagram
In right $\triangle A D C$
$\tan 30^{\circ}=\frac{C D}{A D}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{100}{x}$
$\Rightarrow \mathrm{x}=100 \sqrt{ } 3$
In right $\triangle \mathrm{BDC}$
$\tan 45^{\circ}=\frac{C D}{D B}$
$\Rightarrow 1=\frac{100}{y}$
$\Rightarrow \mathrm{y}=100 \mathrm{~m}$
Distance between two cars

$$
\begin{align*}
=A B & =A D+D B \tag{1/2}\\
& =(100 \sqrt{ } 3+100) \mathrm{m} \\
& =(100 \times 1.73+100) \mathrm{m} \\
& =(173+100) \mathrm{m} \\
& =273 \mathrm{~m} \tag{1/2}
\end{align*}
$$

Let $B C$ be building of height 20 m and $C D$ be the tower of height h m .
Let A be point on the ground at a distance of $x \mathrm{~m}$ from the foot of the building.
In right $\triangle \mathrm{ABC}$,
$\tan 45^{\circ}=\frac{B C}{A B}$
$\Rightarrow 1=\frac{20}{X}$
$\Rightarrow \mathrm{x}=20 \mathrm{~m}$
In right $\triangle \mathrm{ABD}$,

$$
\begin{aligned}
& \tan 60^{\circ}=\frac{B D}{A B} \\
& \begin{aligned}
& \Rightarrow \sqrt{ } 3=\frac{h+20}{X} \\
& \Rightarrow \sqrt{ } 3=\frac{h+20}{20} \\
& \Rightarrow \quad \mathrm{~h}=20 \sqrt{ } 3-20 \\
&=20(\sqrt{ } 3-1) \\
&=20 \times 0.732 \\
&=14.64 \mathrm{~m}
\end{aligned}
\end{aligned}
$$

Height of tower $=14.64 \mathrm{~m}$

Total number of cards $=48$
Probability of an event $=\frac{\text { Total number of favourable outcomes }}{\text { Total number of outcomes }}$
Number of cards divisible by $7=7$
$P($ cards divisible by 7$)=\frac{7}{48}$
Number of cards having a perfect square $=6$
$P($ cards having a perfect square $)=\frac{6}{48}=\frac{1}{8}$
Number of multiples of 6 from 3 to $50=8$
$P($ multiple of 6 from 3 to 50$)=\frac{8}{48}=\frac{1}{6}$

Ans 28

By Section formula

$$
\begin{gather*}
9 a-2=\frac{3(8 a)+1(3 a+1)}{3+1} \\
-b=\frac{3(5)+1(-3)}{3+1} \tag{2}\\
\text { From (2) } \\
-b=\frac{15-3}{4}=3 \\
b=-3 \tag{1}
\end{gather*}
$$

From (1)

$$
\begin{align*}
9 a-2 & =\frac{24 a+3 a+1}{4} \\
4(9 a-2) & =27 a+1 \\
36 a-8 & =27 a+1 \\
9 a & =9 \\
a & =1 \tag{1}
\end{align*}
$$

Ans 29
Let $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ are two points which divide $A B$ in three equal parts.
By Section formula

$$
\begin{align*}
\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) & =\left(\frac{1 X(-4)+2 X(2))}{1+2}, \frac{1 X(-6)+2 X(-3))}{1+2}\right) \tag{1}\\
& =\left(\frac{-4+4}{3}, \frac{-6+(-6)}{3}\right) \\
& =(0,-4) \tag{1}
\end{align*}
$$

$$
\begin{align*}
\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) & =\left(\frac{2 X(-4)+1 X(2))}{2+1}, \frac{2 X(-6)+1 X(-3))}{2+1}\right) \tag{1}\\
& =\left(\frac{-8+2}{3}, \frac{-12+(-3)}{3}\right) \\
& =(-2,-5) \tag{1}
\end{align*}
$$

Ans 30

Let rcm be the radius of each circle.
Area of square - Area of 4 sectors $=\frac{24}{7} \mathrm{~cm}^{2}$
$\Rightarrow \quad(2 r)^{2}-4\left(\frac{90^{0}}{360^{0}} \times \pi r^{2}\right)=\frac{24}{7}$
$\Rightarrow \quad 4 r^{2}-\frac{22}{7} r^{2}=\frac{24}{7}$
$\Rightarrow \frac{28 r^{2}-22 r^{2}}{7}=\frac{24}{7}$
$\Rightarrow \quad 6 r^{2}=24$
$\Rightarrow \quad r^{2}=4$
$\Rightarrow \quad r= \pm 2$
\Rightarrow radius of each circle is 2 cm (r cannot be negative)

In right $\triangle \mathrm{BAC}$, by Pythagoras theorem

$$
\begin{align*}
\mathrm{BC}^{2} & =\mathrm{AB}^{2}+\mathrm{AC}^{2} \\
& =15^{2}+20^{2} \\
& =225+400 \\
& =625 \\
\mathrm{BC} & =25 \mathrm{~cm} \tag{1/2}
\end{align*}
$$

Let $O A=y \mathrm{~cm}$ and $\mathrm{OB}=\mathrm{xcm}$

$$
\begin{equation*}
x^{2}+y^{2}=15^{2} \tag{1/2}
\end{equation*}
$$

$(25-x)^{2}+y^{2}=20^{2}$
Solving we get $\mathrm{x}=9$ and $\mathrm{y}=12$
$\therefore O A=12 \mathrm{~cm}$ and $O B=9 \mathrm{~cm}$
Volume of double cone $=\frac{1}{3} \pi(O A)^{2} X O C+\frac{1}{3} \pi(O A)^{2} X O B$

$$
\begin{align*}
= & \frac{1}{3} \times 3.14 \times(12)^{2} \times(\mathrm{OC}+\mathrm{OB}) \tag{1/2}\\
= & \frac{1}{3} \times 3.14 \times 144 \times 25 \\
= & 3768 \mathrm{~cm}^{3} \tag{1/2}
\end{align*}
$$

Surface area of double cone $=\pi \times$ OA X AC $+\pi \times$ OA X AB

$$
\begin{align*}
& =\pi \times 12 \times 20+\pi \times 12 \times 15 \tag{1/2}\\
& =420 \pi \mathrm{~cm}^{2} \\
& =1318.8 \mathrm{~cm}^{2} \tag{1/2}
\end{align*}
$$

