SAMPLE QUESTION PAPER MATHEMATICS CLASS-X (2016-17) SUMMATIVE ASSESSMENT -II

MARKING SCHEME SECTION -A

1. 2. 3. 4.	7/11 136 60° 34°	[1] [1] [1] [1]
	SECTION-B	
5.	Here a=4, d=4 and $a_n = 96$ So, $a_n = a + (n-1)d$ 96 = 4 + (n-1)4	[1/2]
	n=24	[1/2]
	Now, $= -(a+a_n)$	[1/2]
	= 1200	[1/2]
6.	Let A(-1, 3), B(2, p) and C(5, -1) be 3 collinear points. Then Area $\triangle ABC = 0$ Then, $\frac{1}{2} [-1(p+1)+2(-1-3)+5(3-p)]=0$ i.ep-1-8+15-5p=0 i.e. 6=6p i.e. p=1	[1/2] [1] [1/2]
7.	For equal roots, b^2 -4ac=0 Here, $a=k$, $b=-k$ and $c=1$ $\therefore k^2 - 4(k)(1)=0$ i.e. $k(k-4)=0$ i.e. $k=0$ or $k=4$ rejecting $k=0$, we get $k=4$.	[1/2] [1/2] [1/2] [1/2]
8.	Perimeter of $\triangle ABC = AB+BC+CA$ = AB+[BP+CP]+CA = AB+BQ+CR+CA (Tangents from an external point are equal) = AQ+AR = AR+AR (Tangents from an external point are equal) =2AR	[1/2] [1/2] [1/2] [1/2]

9. Point R divides PQ in ratio 2:3. [1/2]

Co-ordinates of point R are given by

 $x = (2 \times -3 + 3 \times 2)/5 = 0$ [1/2]

$$y = (2 \times 4 + 3 \times -1)/5 = 1$$
[1/2]

So, the required point R is (0,1) [1/2]

10.

Tangents drawn to a circle from same external point are equal in length. So,		[1/2]
AE - CE	(1)	[1/2]

AE= CE	(1)	[1/2]

And EB = ED ------(2) [1/2]

Adding (1) and (2), we get,

$$AB = CD.$$
[1/2]

<u>SECTION – C</u>

11. $x^2 + 12x - 45 = 0$	
Using the method of completing the square,	
$x^{2} + 12x - 45 + 36 = 36$	[1/2]
i.e. $x^2 + 12x + 36 = 36 + 45$	
i.e. $(x+6)^2 = 81$	[1]

i.e.
$$(x+6) = \pm 9$$
 [1/2]
i.e. $x=3 \text{ or } -15$ [1]

$$12. \frac{a+9d}{a+29d} = \frac{1}{3}$$
[1]

i.e. 3a +27 d = a+29 d

Also, $S_6 = 42$

i.e.
$$\frac{6}{2}(2a+5d)=42$$
 [1]

13. Let AB represent the lighthouse. $\angle ACB = 45^{\circ}$ and $\angle ADB = 30^{\circ}$

tan 45°= AB/BC 1=75/ BC i.e. BC=75m [1] Now, in \triangle ABD, tan 30°= AB/BD i.e. $1/\sqrt{3} = 75/$ (BC+CD) i.e. $1/\sqrt{3} = 75/$ (75 +CD) i.e. 75+CD= $75\sqrt{3}$ i.e.CD= $75(\sqrt{3} - 1)$ m [1]

14. Let A(-1,3), B(1,-1) and C(5,1) be the vertices of \triangle ABC.

=

Median through C would be the line joining C and midpoint of side AB. Let it be point D

$$D = \left(\frac{-1+1}{2}, \frac{3-1}{2}\right)$$
[1]

Length of median CD =
$$\sqrt{(5-0)^2 + (1-1)^2}$$
 [1]

15. No. of cards left =
$$52-3=49$$

$$P(\text{face card}) = \frac{9}{49}$$
[1]

$$P(\text{red card}) = \frac{23}{49}$$
[1]

$$P(a \text{ king}) = \frac{3}{49}$$
[1]

$16. \frac{\theta}{360} \times 2\pi r = 44.$	[1/2]
Putting r=42cm, we get θ = 60°	[1]

Now, Area of minor segment= Area of minor sector- Area of Δ Since $\theta = 60^\circ$, so the triangle formed will be an equilateral Δ

 \therefore Area of minor segment= Area of minor sector- Area of equilateral Δ

i.e. Area of minor segment =
$$\frac{\theta}{360} \times \pi r^2 - \frac{\sqrt{3}}{4} a^2$$
 [1]

$$=924-441\sqrt{3} \text{ cm}^2$$
 [1/2]

17. Time required to fill the conical vessel= Volume of cone / volume of water coming out of cylindrical pipe per unit time[1/2]

$$=\frac{\frac{1}{3}\pi r_1^2 h_1}{\pi r_2^2 h_2}$$
[1]

$$= [1/3 \pi (40)^2 \times 72]/\pi (2)^2 \times 20 \times 100$$
[1]

$$= 4.8 \text{ minutes} \qquad [1/2]$$

[1/2]

18. Area of shaded region = Area of semicircle with diameter PS – Area of semicircle with diameter QS + Area of semicircle with diameter PQ. [1] So, required area = $\frac{1}{2} \pi (6)^2 - \frac{1}{2} \pi (4)^2 + \frac{1}{2} \pi (2)^2$ [1]

$$= \frac{1}{2} \pi [36-16+4] \text{ cm}^2$$
 [1/2]

$$= 37.71 \text{ cm}^2$$

19. No. of lead shots =
$$\frac{Volume \ of \ cuboid}{Volume \ of \ sphere}$$
 [1/2]

$$= \frac{l_1 b_1 h_1}{\frac{4}{3} \pi r_2^3}$$
[1]

$$=\frac{24 \times 22 \times 12 \times 3}{\pi \times 3 \times 3 \times 3 \times 4}$$
[1]

20. Required surface area =
$$2 \pi rh + 2 x [2 \pi r^2]$$

= $2 x \pi x 3.5 x 10 + 4 \pi (3.5)^2$ [1]
= $374 cm^2$ [1/2]
Cost of polishing = Rs.374 x 10 = Rs.3740 [1/2]

SECTION -D

21. Correct Construction of $\triangle ABC$	[2]
Correct construction of similar triangle	[2]

22. Let the speed of the train be x km/hr.

According to question,

$$\frac{90}{x} - \frac{90}{x+15} = \frac{1}{2}$$
[1]
i.e. $x^2 + 15x - 2700 = 0$
[1]
Solving for x we get,
 $x = -60$ or 45
[1]
Rejecting $x = -60$, we get, $x = 45$
So, $x = 45$ km/hr
[1/2]
Time = Distance / Speed
 $= \frac{90}{45}$
 $= 2$ hours
[1/2]

23. (i) Cards marked with numbers which are multiples of 3 are 3, 9, 15, 21, 27, 33, 39 and 45. So, *P* (getting a number divisible by 3) = $\frac{8}{25}$ [1]

(ii)
$$P$$
 (composite number) = $\frac{10}{25}$ [1]

(iii) P (not a perfect square) =
$$1 - P$$
 (perfect square) = $1 - \frac{4}{25} = \frac{21}{25}$ [1]

(iv) *P* (multiple of 3 and 5) =
$$\frac{2}{25}$$
 [1]

[1/2]

Construction: Join OR, OC and OS.

In ΔORA and ΔOCA

OR = OC (radii)

AO=AO (common)

AR= AC (tangents from an external point)

$\Delta ORA \cong \Delta OCA (By SSS rule)$	[1]
$\therefore \angle RAO = \angle CAO \text{ (CPCT)} \dots \dots \dots \dots (1)$	[1/2]
Similarly $\triangle OSB \cong \triangle OCB$ (By SSS rule)	
$\therefore \angle SBO = \angle CBO \text{ (CPCT)} \dots (2)$	[1/2]
$\angle RAB + \angle SBA = 180^{\circ}$ (Co- interior angles)	
$2 \angle OAB + 2 \angle OBA = 180^{\circ}$ (From (1) & (2)	
$\angle OAB + \angle OBA = 90^{\circ} \dots \dots \dots \dots \dots (3)$	[1]
In $\triangle AOB$,	
$\angle OAB + \angle OBA + \angle AOB = 180^{\circ}$ (Angle sum property)	
$90^\circ + \angle AOB = 180^\circ \text{ (From 3)}$	
$\angle AOB = 90^{\circ}$	[1/2]

25. Quadratic formula,
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 [1]
 $a = p^2, b = (p^2 - q^2), c = -q^2$ [1/2]
 $x = [-(p^2 - q^2) \pm \sqrt{[(p^2 - q^2)^2 - 4p^2(-q^2)]/2p^2}$ [1]

$$\begin{aligned} x &= \left[-p^2 + q^2 \pm (p^2 + q^2) \right] / 2p^2 \\ x &= q^2 / p^2 \text{ or } -1 \end{aligned}$$
 [1/2]

So, midpoint of AC = midpoint of BD [1/2]
i.e.
$$(\frac{1+k}{2}, \frac{2-2}{2}) = (\frac{2-4}{2}, \frac{3-3}{2})$$
 [1/2]
i.e. $\frac{(1+k)}{2} = 1$

i.e.
$$k = -3$$
 [1/2]
Now ar ABCD= 2 Area of ABD

$$=2 \times \frac{1}{2} \times [1(6) + 2(-1) - 4(-5)]$$

= 24 sq units. [1]

AB=
$$\sqrt{(1-2)^2 + (-2-3)^2}$$

= $\sqrt{26}$ units [1/2]

Ar (ABCD) = base x height
= AB x h
So,
$$24=\sqrt{26}$$
 x h
So, $h=24/\sqrt{26}$ units
[1]

27.

Let FC be the lake and D be a point 100m above the lake.

Let A be the helicopter at height *h* metre above the lake and let E be its reflection \therefore CE = *h* metre $\angle BDE = 60^\circ$, $\angle ADB = 30^\circ$ and DB = x metre [1 mark for correct figure and description]

$$\operatorname{Tan} 30^\circ = \frac{h - 100}{x}$$
$$1/\sqrt{3} = \frac{h - 100}{x}$$

$$h = x/\sqrt{3} + 100 - (1)$$
[1]

$$Tan 60^{\circ} = \frac{h+100}{x}$$

$$\sqrt{3} x = h+100$$

$$h = \sqrt{3}x - 100 - (2)$$
[1]
From equation 1 & 2

$$x/\sqrt{3} + 100 = \sqrt{3}x - 100$$

$$x = 100\sqrt{3}m$$

and so $h=200m$ [1]
i.e. height of the helicopter is 200m.

28. (i) Volume of each container =
$$\frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1r_2)$$
 [1/2]
= $\frac{1}{3} \times \frac{22}{7} \times 30(20^2 + 40^2 + 20 \times 40)$

$$= 88000 cm^3 = 88 l$$
 [1]

Total milk = 880 l

- a) Milk in 1 container= 88 *l*
- So number of containers $=\frac{880}{88} = 10$ [1]
- b) $Cost = 880 \times 35 = Rs.30800$ [1/2]
- c) Any relevant Value inculcated [1]
- **29**.

[Correct Figure 1 mark]

 $\angle APB = 90^{\circ}$ (angle in a semicircle)

∠ <i>ODB</i> =90°	' (tangent is	perpendicular	to	the 1	adius)
-------------------	---------------	---------------	----	-------	--------

 ΔAPB and ΔODB

$$\angle APB = \angle ODB = 90^{\circ}$$
[1/2]

$$\angle ABP = \angle OBD \text{ (common)}$$
 [1/2]

$$\Delta APB \sim \Delta ODB (AA)$$
 [1/2]

$$\therefore \frac{OD}{AP} = \frac{OB}{AB} (\text{CPST})$$
[1/2]

$$\frac{8}{AP} = \frac{13}{26}$$
 [1/2]

$$AP = 16cm$$
 [1/2]

30. (i)
$$a_3 = 600 \quad \therefore a + 2d = 600 \quad \dots \quad (1)$$
 [1/2]

$$a_7 = 700 \quad \therefore a + 6d = 700 \quad \dots \quad (2)$$

From (1) & (2)

(i)
$$a_{1=} = 550$$
 [1]

(ii)
$$a_{10} = a + 9d = 550 + 9 \times 25 = 775$$
 [1]

(iii)
$$S_7 = \frac{7}{2}(2 \times 550 + 6 \times 25)$$

= 4375 [1]

31.
$$r = 7$$
 cm, $h = 50 \times 0.5 = 25$ cm [1/2]

Total Surface Area = $2\pi r (r + h)$ [1/2]

$$= 2 \times \frac{22}{7} \times 7 \times (7 + 25)$$

= 1408 cm² [1]

[1/2]

Volume of the box =
$$25 \times 25 \times 25 = 15625 \text{ cm}^3$$
 [1/2]

Volume of the solid formed =
$$\pi r^2 h$$
 [1/2]

$$=\frac{22}{7} \times 7 \times 7 \times 25 = 3850 \text{ cm}^3$$
 [1/2]

Space left = $15625 - 3850 = 11775 \text{ cm}^3$

-0-0-0-