SAMPLE QUESTION PAPER
 MATHEMATICS
 CLASS-X (2016-17)
 SUMMATIVE ASSESSMENT -II

MARKING SCHEME

SECTION -A

1. $7 / 11$
[1]
2. 136
3. 60°
4. 34°

SECTION-B

5. Here $\mathrm{a}=4, \mathrm{~d}=4$ and $\mathrm{a}_{\mathrm{n}}=96$

So, $a_{n}=a+(n-1) d$

$$
\begin{align*}
& 96=4+(n-1) 4 \\
& \mathrm{n}=24 \tag{1/2}
\end{align*}
$$

$$
\text { Now, } \quad \begin{array}{r}
=-\left(a+a_{n}\right) \\
=1200 \tag{1/2}
\end{array}
$$

6. Let $\mathrm{A}(-1,3), \mathrm{B}(2, \mathrm{p})$ and $\mathrm{C}(5,-1)$ be 3 collinear points.

Then Area $\triangle \mathrm{ABC}=0$
Then, ${ }^{1}[-1(p+1)+2(-1-3)+5(3-p)]=0$
i.e. $-p-1-8+15-5 p=0$
i.e. $6=6 p$
i.e. $p=1$
7. For equal roots, $b^{2}-4 a c=0$

Here, $a=k, b=-k$ and $c=1$
$\therefore \mathrm{k}^{2}-4(\mathrm{k})(1)=0$
i.e. $k(k-4)=0$
i.e. $\mathrm{k}=0$ or $\mathrm{k}=4$
rejecting $\mathrm{k}=0$, we get $\mathrm{k}=4$.
8. Perimeter of $\triangle \mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$

$$
\begin{array}{lr}
=\mathrm{AB}+[\mathrm{BP}+\mathrm{CP}]+\mathrm{CA} & {[1 / 2]} \\
=\mathrm{AB}+\mathrm{BQ}+\mathrm{CR}+\mathrm{CA} \text { (Tangents from an external point are equal) } & {[1 / 2]} \\
=\mathrm{AQ}+\mathrm{AR} & \\
=\mathrm{AR}+\mathrm{AR} \text { (Tangents from an external point are equal) } & {[1 / 2]} \\
=2 \mathrm{AR} & \tag{1/2}\\
&
\end{array}
$$

9. Point R divides PQ in ratio 2:3.

Co-ordinates of point R are given by

$$
\begin{align*}
& x=(2 \times-3+3 \times 2) / 5=0 \\
& y=(2 \times 4+3 \times-1) / 5=1 \tag{1/2}
\end{align*}
$$

So, the required point R is $(0,1)$
10.

Tangents drawn to a circle from same external point are equal in length. So,

$\mathrm{AE}=\mathrm{CE}$

And $\mathrm{EB}=\mathrm{ED}$
Adding (1) and (2), we get,

$$
\mathrm{AB}=\mathrm{CD} .
$$

SECTION - C

11. $x^{2}+12 x-45=0$

Using the method of completing the square,
$x^{2}+12 x-45+36=36$
i.e. $x^{2}+12 x+36=36+45$
i.e. $(x+6)^{2}=81$
i.e. $(x+6)= \pm 9$
i.e. $x=3$ or -15
12. $\frac{a+9 d}{a+29 d}=\frac{1}{3}$
i.e. $a=d-$

Also, $S_{6}=42$
i.e. $\frac{6}{2}(2 a+5 d)=42$
i.e. $3(2 a+5 a)=42$ Using... (1)
i.e. $3(7 a)=42$
i.e. $a=2$
13. Let $A B$ represent the lighthouse.
$\angle A C B=45^{\circ}$ and $\angle A D B=30^{\circ}$

Fig [1]
In $\triangle \mathrm{ABC}$,
$\tan 45^{\circ}=\mathrm{AB} / \mathrm{BC}$

$$
1=75 / \mathrm{BC}
$$

i.e. $B C=75 \mathrm{~m}$

Now, in $\triangle \mathrm{ABD}$,
$\tan 30^{\circ}=\mathrm{AB} / \mathrm{BD}$
i.e. $1 / \sqrt{3}=75 /(B C+C D)$
i.e. $1 / \sqrt{3}=75 /(75+C D)$
i.e. $75+C D=75 \sqrt{3}$
i.e. $C D=75(\sqrt{3}-1) \mathrm{m}$
14. Let $\mathrm{A}(-1,3), \mathrm{B}(1,-1)$ and $\mathrm{C}(5,1)$ be the vertices of $\triangle \mathrm{ABC}$.

Median through C would be the line joining C and midpoint of side $A B$. Let it be point D

$$
\begin{equation*}
\mathrm{D}=\left(\frac{-1+1}{2}, \frac{3-1}{2}\right) \tag{1}
\end{equation*}
$$

Coordinates of D are $(0,1)$
Length of median $\mathrm{CD}=\sqrt{(5-0)^{2}+(1-1)^{2}}$

$$
\begin{equation*}
=5 \text { units. } \tag{1/2}
\end{equation*}
$$

15. No. of cards left $=52-3=49$
$P($ face card $)=\frac{9}{49}$
$\mathrm{P}($ red card $)=\frac{23}{49}$
$P($ a king $)=\frac{3}{49}$
16. $\frac{\theta}{360} \times 2 \pi \mathrm{r}=44$.

Putting $\mathrm{r}=42 \mathrm{~cm}$, we get $\theta=60^{\circ}$
Now, Area of minor segment= Area of minor sector- Area of Δ
Since $\theta=60^{\circ}$, so the triangle formed will be an equilateral Δ
\therefore Area of minor segment= Area of minor sector- Area of equilateral Δ

$$
\text { i.e. Area of minor segment } \begin{align*}
& =\frac{\theta}{360} \times \pi \mathrm{r}^{2}-\frac{\sqrt{3}}{4} \mathrm{a}^{2} \tag{1}\\
& =924-441 \sqrt{3} \mathrm{~cm}^{2} \tag{1/2}
\end{align*}
$$

17. Time required to fill the conical vessel= Volume of cone / volume of water coming out of cylindrical pipe per unit time

$$
\begin{equation*}
=\frac{\frac{1}{3} \pi r_{1}{ }^{2} h_{1}}{\pi r_{2}{ }^{2} h_{2}} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& =\left[1 / 3 \pi(40)^{2} \times 72\right] / \pi(2)^{2} \times 20 \times 100 \tag{1}\\
& =4.8 \text { minutes } \tag{1/2}
\end{align*}
$$

18. Area of shaded region = Area of semicircle with diameter PS - Area of semicircle with diameter QS + Area of semicircle with diameter PQ.
So, required area $=1 / 2 \pi(6)^{2}-1 / 2 \pi(4)^{2}+1 / 2 \pi(2)^{2}$

$$
\begin{equation*}
=1 / 2 \pi[36-16+4] \mathrm{cm}^{2} \tag{1}
\end{equation*}
$$

$=37.71 \mathrm{~cm}^{2}$
19. No. of lead shots $=\frac{\text { Volume of cuboid }}{\text { Volume of sphere }}$

$$
\begin{gather*}
=\frac{l_{1} b_{1} h_{1}}{\frac{4}{3} \pi r_{2}{ }^{3}} \tag{1}\\
=\frac{24 \times 22 \times 12 \times 3}{\pi \times 3 \times 3 \times 3 \times 4} \tag{1}\\
=56 \tag{1/2}
\end{gather*}
$$

20. Required surface area $=2 \pi \mathrm{rh}+2 \times\left[2 \pi \mathrm{r}^{2}\right]$

$$
\begin{align*}
& =2 \times \pi \times 3.5 \times 10+4 \pi(3.5)^{2} \tag{1/2+1/2}\\
& =374 \mathrm{~cm}^{2} \tag{1}
\end{align*}
$$

Cost of polishing $=$ Rs. $374 \times 10=$ Rs .3740

SECTION -D

21. Correct Construction of $\triangle A B C$

Correct construction of similar triangle
22. Let the speed of the train be $x \mathrm{~km} / \mathrm{hr}$.

According to question,

$$
\begin{align*}
& \frac{90}{x}-\frac{90}{x+15}=\frac{1}{2} \tag{1}\\
& \text { i.e. } x^{2}+15 x-2700=0
\end{align*}
$$

Solving for x we get,
$x=-60$ or 45
Rejecting $x=-60$, we get, $x=45$
So, $x=45 \mathrm{~km} / \mathrm{hr}$
Time $=$ Distance $/$ Speed

$$
\begin{align*}
& =\frac{90}{45} \\
& =2 \text { hours } \tag{1/2}
\end{align*}
$$

23. (i) Cards marked with numbers which are multiples of 3 are $3,9,15,21,27,33,39$ and 45 .

So, $P($ getting a number divisible by 3$)=\frac{8}{25}$
(ii) $P($ composite number $)=\frac{10}{25}$
(iii) $P($ not a perfect square $)=1-P($ perfect square $)=1-\frac{4}{25}=\frac{21}{25}$
(iv) $P($ multiple of 3 and 5$)=\frac{2}{25}$
24.

Construction: Join OR, OC and OS.
In $\triangle \mathrm{ORA}$ and $\triangle \mathrm{OCA}$

$$
\begin{align*}
& \mathrm{OR}=\mathrm{OC} \text { (radii) } \\
& \mathrm{AO}=\mathrm{AO} \text { (common) } \\
& \mathrm{AR}=\mathrm{AC} \text { (tangents from an external point) } \\
& \triangle \mathrm{ORA} \cong \triangle \mathrm{OCA} \text { (By SSS rule) } \\
& \therefore \angle R A O=\angle C A O \text { (CPCT) } \tag{1}\\
& \text { Similarly } \triangle \mathrm{OSB} \cong \triangle \mathrm{OCB} \text { (By SSS rule) } \\
& \therefore \angle S B O=\angle C B O \text { (CPCT) } \tag{2}\\
& \angle R A B+\angle S B A=180^{\circ} \text { (Co- interior angles) } \\
& 2 \angle O A B+2 \angle O B A=180^{\circ} \text { (From (1) \& (2) } \\
& \angle O A B+\angle O B A=90^{\circ} \tag{3}\\
& \text { In } \triangle \mathrm{AOB} \text {, } \\
& \angle \mathrm{OAB}+\angle \mathrm{OBA}+\angle \mathrm{AOB}=180^{\circ} \text { (Angle sum property) } \\
& 90^{\circ}+\angle \mathrm{AOB}=180^{\circ} \text { (From 3) } \\
& \angle \mathrm{AOB}=90^{\circ}
\end{align*}
$$

25. Quadratic formula, $\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{equation*}
\mathrm{a}=\mathrm{p}^{2}, \mathrm{~b}=\left(\mathrm{p}^{2}-\mathrm{q}^{2}\right), \mathrm{c}=-\mathrm{q}^{2} \tag{1/2}
\end{equation*}
$$

$x=\left[-\left(p^{2}-q^{2}\right) \pm \sqrt{ }\left[\left(p^{2}-q^{2}\right)^{2}-4 p^{2}\left(-q^{2}\right)\right] / 2 p^{2}\right.$
$\mathrm{x}=\left[-\mathrm{p}^{2}+\mathrm{q}^{2} \pm\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right)\right] / 2 \mathrm{p}^{2}$
$\mathrm{x}=q^{2} / p^{2}$ or -1
26. Diagonals of a parallelogram bisect each other,

So, midpoint of $\mathrm{AC}=$ midpoint of BD
i.e. $\left(\frac{1+k}{2}, \frac{2-2}{2}\right)=\left(\frac{2-4}{2}, \frac{3-3}{2}\right)$
i.e. $\frac{(1+k)}{2}=-1$
i.e. $k=-3$

Now ar $\mathrm{ABCD}=2$ Area of $\triangle \mathrm{ABD}$
$=2 \times \frac{1}{2} \times[1(6)+2(-1)-4(-5)]$ $=24 \mathrm{sq}$ units.

$$
\begin{gather*}
\mathrm{AB}=\sqrt{ }(1-2)^{2}+(-2-3)^{2} \tag{1}\\
=\sqrt{26} \text { units } \tag{1/2}
\end{gather*}
$$

$\operatorname{Ar}(\mathrm{ABCD})=$ base x height

$$
=\mathrm{AB} \times \mathrm{h}
$$

So, $24=\sqrt{26} \mathrm{xh}$
So, $h=24 / \sqrt{26}$ units
27.

Let FC be the lake and D be a point 100 m above the lake.
Let A be the helicopter at height h metre above the lake and let E be its reflection $\therefore \mathrm{CE}=h$ metre $\angle B D E=60^{\circ}, \angle A D B=30^{\circ}$ and $\mathrm{DB}=x$ metre
[1 mark for correct figure and description]
$\operatorname{Tan} 30^{\circ}=\frac{h-100}{x}$
$1 / \sqrt{3}=\frac{h-100}{x}$
$h=\mathrm{x} / \sqrt{3}+100$
$\operatorname{Tan} 60^{\circ}=\frac{h+100}{x}$
$\sqrt{3} \mathrm{x}=h+100$
$h=\sqrt{3} x-100$
From equation $1 \& 2$
$\mathrm{x} / \sqrt{3}+100=\sqrt{3} x-100$
$\mathrm{x}=100 \sqrt{3} \mathrm{~m}$
and so $h=200 \mathrm{~m}$
i.e. height of the helicopter is 200 m .
28. (i) Volume of each container $=\frac{1}{3} \pi h\left(r_{1}{ }^{2}+r_{2}{ }^{2}+r_{1} r_{2}\right)$

$$
\begin{align*}
& =\frac{1}{3} \times \frac{22}{7} \times 30\left(20^{2}+40^{2}+20 \times 40\right) \\
& =88000 \mathrm{~cm}^{3}=88 \mathrm{l} \tag{1}
\end{align*}
$$

Total milk $=880 l$
a) Milk in 1 container $=88 l$

So number of containers $=\frac{880}{88}=10$
b) Cost $=880 \times 35=$ Rs. 30800
c) Any relevant Value inculcated
29.

[Correct Figure 1 mark]
$\angle A P B=90^{\circ}$ (angle in a semicircle)
$\angle O D B=90^{\circ}$ (tangent is perpendicular to the radius)
$\triangle \mathrm{APB}$ and $\triangle \mathrm{ODB}$
$\angle A P B=\angle O D B=90^{\circ}$
$\angle A B P=\angle O B D$ (common)
$\Delta \mathrm{APB} \sim \Delta \mathrm{ODB}(\mathrm{AA})$
$\therefore \frac{O D}{A P}=\frac{O B}{A B}(\mathrm{CPST})$
$\frac{8}{A P}=\frac{13}{26}$
$\mathrm{AP}=16 \mathrm{~cm}$
30. (i) $a_{3}=600 \quad \therefore \mathrm{a}+2 \mathrm{~d}=600$
---------------- (1)
$a_{7}=700 \quad \therefore \mathrm{a}+6 \mathrm{~d}=700$
From (1) \& (2)

$$
\begin{equation*}
d=25 \quad, a=550 \tag{1}
\end{equation*}
$$

(i) $a_{1=}=550$
(ii) $a_{10}=\mathrm{a}+9 \mathrm{~d}=550+9 \times 25=775$
(iii) $S_{7}=\frac{7}{2}(2 \times 550+6 \times 25)$

$$
\begin{equation*}
=4375 \tag{1}
\end{equation*}
$$

31. $r=7 \mathrm{~cm}, h=50 \times 0.5=25 \mathrm{~cm}$

Total Surface Area $=2 \pi r(r+h)$

$$
\begin{align*}
& =2 \times \frac{22}{7} \times 7 \times(7+25) \tag{1/2}\\
& =1408 \mathrm{~cm}^{2} \tag{1}
\end{align*}
$$

Volume of the box $=25 \times 25 \times 25=15625 \mathrm{~cm}^{3}$
Volume of the solid formed $=\pi r^{2} h$
$=\frac{22}{7} \times 7 \times 7 \times 25=3850 \mathrm{~cm}^{3}$
Space left $=15625-3850=11775 \mathrm{~cm}^{3}$

