HS/XI/Sc/Ch/18

2018

CHEMISTRY

(Theory)

Full Marks: 70

Time : 3 hours

General Instructions :

- (i) Write all answers in the Answer Script.
- (ii) Attempt all parts of a question together in one place.
- (iii) All questions are compulsory.
- (iv) Marks for each question are indicated against it.
- (v) Question No. 1 of Part —I is of Multiple-choice Type, each of ½ mark. Choose and write the correct answer in the Answer Script from the four options given.
- (vi) Question Nos. 2 to 9 of Part —II are very Short-answer Type Questions of 1 mark each. Answer these either in one sentence or in one word each.
- (vii) Question Nos. 10 to 17 of Part—III are Short-answer Type–I Questions of 2 marks each. Answer these in about 20–30 words each.

(2)

- (viii) Question Nos. **18** to **26** of Part—IV are Short-answer Type–II Questions of 3 marks each. Answer these in about 40–50 words each.
- (ix) Question Nos. **27** to **29** of Part—V are Long-answer Type Questions of 5 marks each. Answer these in about 70–80 words each.
- (x) Use of ordinary Scientific Calculators and Log Tables are allowed.
- (xi) Mobile phones and Pagers are not allowed inside the Examination Hall.

PART — I

- 1. Choose and write the correct answers for the following in the answer script. $\frac{1}{2} \times 8 = 4$
 - (a) The number of molecules of O_2 present in 32 g of O_2 is: $\frac{1}{2}$
 - (*i*) 6.023×10^{23}
 - (*ii*) 6.023×10^{-23}
 - (*iii*) 60.23×10^{23}
 - (*iv*) 60.23×10^{-23}

$\rm HS/XI/Sc/Ch \textbf{/18}$

- (b) One mole of methane burns in excess of air to $\frac{1}{2}$ produce CO_2
 - *(i)* 44 g
 - *(ii)* 22 g
 - *(iii)* 88 g
 - *(iv)* 11 g
- (c) Which of the following pairs represent isoelectronic $\frac{1}{2}$
 - (*i*) F^{-} , Mg, Al³⁺
 - (ii) Mg^{2+} , Na^+ and Ne
 - (iii) Na, Mg^{2+} and F
 - (*iv*) Al, Ne and O^{2-}
- (d) How many electrons can fit into the orbitals that comprise the third quantum shell n = 3?
 - (i) 2(ii) 8

(iii)

(iv) 32

18

- (4)
- The outermost electronic configuration of the most (e) electropositive element is $\frac{1}{2}$ $[He]2s^1$ (i) (ii) $[Xe]6s^1$ (iii) $[He]2s^2$ *(iv)* $[Xe]6s^2$ (f) Which of the following elements has the maximum electron gain enthalpy? $\frac{1}{2}$ (i) Oxygen Chlorine (ii) (iii) Fluorine (iv) Nitrogen Beryllium shows diagonal relationship with $\frac{1}{2}$ (g)(i) Na (ii) В (iii) Al *(iv)* K

 $\frac{1}{2}$

- *h.* Which one of the following is present as an active ingredient in the bleaching powder for bleaching action?
 - (i) $CaOCl_2$
 - (ii) $Ca(OCl)_2$
 - (iii) CaO_2Cl
 - (iv) $CaCl_2$

PART — II

Why is ' π ' bond weaker than ' σ ' bond? 2. 1 Write the ideal gas equation for one mole of a gas. 3. 1 What is the difference between an open system and a 4. closed system? 1 What is Le Chatelier's Principle? 5. 1 **6.** How many σ and π bonds are present in the molecule $HC \equiv C - C = C - CH_3$ 1

7. What are isomers? Give one example of functional 1 isomerism. $\frac{1}{2}$ State Markonikoff's rule. 8. 1 Predict the shapes of 9. BF₃ and (i) NH₃ on the basis of VSEPR theory. 1 (ii) PART — III **10.** Prove that, Molecular mass of a gas $= 2 \times$ vapour density. 2 **11.** What is Hund's rule of maximum multiplicity? Taking example of nitrogen, explain. 2 **12.** What is meant by diagonal relationship in the periodic table? What it is due to? 2 **13.** What happens when CO_2 is passed through lime water for long? Give equation. 2

н н

HS/XI/Sc/Ch/18

(i) HCl with
$$CH_3 C = CH_2$$

Cl
(ii) HCl with $CH_3 C = C(CH_3)_2$
HCl with $CH_3 L = C(CH_3)_2$

Or

Write the IUPAC names of the following compounds:

(i)
$$CH_3 - CH - CH = CH_2$$

(ii)
$$CH_3 - CH_2 - CH_2 - CH_3$$
 2

17. Complete the following reactions:

2

- **18.** (a) Calculate the uncertainity in velocity of a cricket ball of mass 150 g if the uncertainity in its position is of the order of 1 Å. $(h = 6.62 \times 10^{-34} \text{ kg m}^2 \text{s}^{-1})$. 2
 - (b) Calculate the number of protons, neutrons and electrons in ${}^{80}_{35}$ Br . 1
- **19.** (a) Explain the following giving reasons: 2
 - (i) The size of Cl^{-} ion is larger than Cl atom.
 - (ii) Na has lower ionization enthalpy than Mg.
 - (b) Define electron gain enthalpy.

HS/XI/Sc/Ch/18

(9)

20. (a) What is aqueous tension?

(b) At 25°C and 760 mm pressure a gas occupies 600 ml volume. What will be its pressure at a height, where temperature is 10°C and volume of the gas is 640 ml?

1

2

2

2

1

1

2

- **21.** (a) Define oxidizing agent and reducing agent on the basis of electronic concept. Give one example in each case.
 - (b) Determine the oxidation number of
 - (*i*) Cr in $Cr_2O_7^{2-}$
 - (ii) I in KIO_3 1

Either

- **22.** (a) Write one method of preparation of H_2O_2
 - (b) Explain why H_2O_2 is stored in coloured or plastic bottles?

Or

- *(c)* Give the laboratory method of preparation of hydrogen.
- (d) What are hydrides? Name the different types of hydrides.

23. (a) What are boranes? Draw the structure of diborane.
(b) Why is AlCl₃ considered as Lewis acid?
1

Either

24. (a) Which aliphatic hydrocarbon series is represented by C_nH_{2n} ? Write the structural formulae of various isomers of the series with four carbon atoms. 3

Or

- (b) Explain Friedel Crafts alkylation and acylation reactions with the help of example. $1\frac{1}{2} + 1\frac{1}{2} = 3$
- 25. (a) Why is acid rain considered as a threat to Taj Mahal?2
 - (b) What is photochemical smog? 1
- **26.** Compare the relative stability of the following species with the help of molecular orbital theory.
 - O_2, O_2^+, O_2^- 3

HS/XI/Sc/Ch/18

(11)

PART — V

27. (a) State first law of thermodynamics and derive its mathematical expression.
(b) What are intensive and extensive properties? Give examples of each.
(c) State Hess's law of constant heat summation.

Either

28. (*a*) For a reaction

 $aA + bB \Longrightarrow cC + dD$

derive the relation $K_p = K_c (RT)^{\Delta n}$

(b) For the reaction $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g);$ the value of K_p is 3.6×10^{-2} atm at 500 K. Calculate the value of K_c for the reaction at the same temperature $(R = 0.0821 \text{ L atm K}^{-1} \text{ mol}^{-1}).$ 2

3

1

2

Or

- (c) Define Buffer solution. Give one example each of acid buffer and basic buffer. 1 + 1 = 2
- (d) What is meant by conjugate acid base pair?
- (e) Define pH of a solution. What is the pH of 0.01M HCl?
- HS/XI/Sc/Ch/18

29. (a) What is inductive effect? What is meant by +I and -I effect? $1\frac{1}{2}$

- (b) What are free radicals? Why are they very reactive? $1\frac{1}{2}$
- (c) What is hyperconjugation effect? How does it differ from resonance effect? 2
