HS/XII/A. Sc. Com/M/19

2019

MATHEMATICS

Full Marks: 100

Time: 3 hours

General Instructions:

- (i) Write all the answers in the Answer Script.
- (ii) The question paper consists of three Sections—A, B and C.
- (iii) Section—A consists of 15 questions, carrying 2 marks each.
- (iv) Section—B consists of 10 questions, carrying 4 marks each, out of which 2 questions have internal choices.
- (v) Section—C has 5 questions, carrying 6 marks each, out of which 2 questions have internal choices.

SECTION—A

- **1.** Show that the function $f : \mathbb{R} \setminus \mathbb{R}$ defined by $f(x) \setminus x^3$ is one-one and onto.
- 2. Evaluate:

$$\sin \frac{1}{3} \sin^{1} \frac{1}{2}$$

- **3.** If $A = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix}$, then find A = 4B.
- **4.** Express the matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$ as a sum of a symmetric and a skew-symmetric matrix.
- **5.** For what value of k the function

$$f(x) = \frac{k \cos x}{2x}, \text{ when } x = \frac{1}{2}$$

$$3 = 0, \text{ when } x = \frac{1}{2}$$

is continuous at $x = \frac{1}{2}$?

6. Show that

$$\frac{d}{dx}(\sin 2x \sin 4x) = 3\sin 6x = \sin 2x$$

- **7.** The side of a square sheet of metal is increasing at 3 cm per minute. At what rate the area is increasing when the side is 10 cm long?
- **8.** Evaluate:

$$\frac{/2}{/2} |\sin x| dx$$

9. Solve the equation

$$\log \frac{dy}{dx}$$
 ax by

10. Evaluate:

$$e^x \frac{1 + x \log x}{x} dx$$

11. Find the value of the integral

$$\int_{0}^{2} \frac{\sin x}{1 + \cos^{2} x} dx$$

12. Find the unit vector perpendicular to both \vec{a} and \vec{b} where

$$\vec{a}$$
 $3\hat{i}$ \hat{j} $2\hat{k}$ and \vec{b} $2\hat{i}$ $3\hat{j}$ \hat{k}

13. Find the value of k so that the lines

$$\frac{1}{3} \frac{x}{2k} \frac{7y}{2k} \frac{14}{2} \text{ and } \frac{7}{3k} \frac{7x}{3k} \frac{5}{1} \frac{y}{5}$$
are at right angles.

14. If \vec{a} , \vec{b} , \vec{c} are unit vectors such that \vec{a} \vec{b} \vec{c} 0, find the value of

$$\vec{a}$$
 \vec{b} \vec{b} \vec{c} \vec{c} \vec{a}

15. The probability that a student selected at random from a class will pass in Hindi is $\frac{4}{5}$ and the probability that he passes in Hindi and English is $\frac{1}{2}$. What is the probability that he will pass in English if it is known that the student has passed in Hindi?

SECTION—B

16. Let \mathbb{N} be the set of natural numbers and let R be a relation on \mathbb{N} \mathbb{N} defined by

$$(a, b)R(c, d)$$
 ad bc

Prove that R is an equivalence relation.

17. Using the properties of determinants, show that

$$\begin{vmatrix} 1 & a & a^2 & bc \\ 1 & b & b^2 & ca \\ 1 & c & c^2 & ab \end{vmatrix} = 0$$

18. If $x = \frac{1 - \log t}{t^2}$ and $y = \frac{3 - 2\log t}{t}$, then show that $\frac{dy}{dx} = t$.

19. Evaluate:

$$(\sin^{-1} x)^2 dx$$

- **20.** Using differential, find the approximate value of $\sqrt[3]{127}$.
- **21.** Find the interval in which the function $f(x) = 5 \cdot 36x \cdot 3x^2 \cdot 2x^3$ is (a) strictly increasing and (b) strictly decreasing.

Or

Find the equation of the tangent to the curve x^2 3y 3 which is parallel to the line y 4x 5 0.

22. Using the properties of definite integral, show that

$$\frac{3}{6} \frac{1}{1 \sqrt{\tan x}} dx \frac{1}{12}$$

23. Evaluate the following integral as the limit of a sum:

$$\int_{1}^{4} (3x^2 + 2x) dx$$

24. Find the equation of the plane passing through the point (1, 0, 2) and perpendicular to each of the planes $2x \ y \ z \ 2 \ 0$ and $x \ y \ z \ 3 \ 0$.

Or

Find the length and foot of the perpendicular from the point (7, 14, 5) to the plane $2x \ 4y \ z \ 2$.

25. Find the shortest distance between the lines

$$\vec{r}$$
 $(6\hat{i} \quad 3\hat{k})$ $(2\hat{i} \quad \hat{j} \quad 4\hat{k})$ and \vec{r} $(9\hat{i} \quad \hat{j} \quad 10\hat{k})$ $(4\hat{i} \quad \hat{j} \quad 6\hat{k})$

HS/XII/A. Sc. Com/M/19/60

SECTION—C

- **26.** Using integration, find the area of the region in the first quadrant enclosed by the *X*-axis, the line y = x and the circle $x^2 = y^2 = 32$.
- **27.** Using matrices, solve the following system of equations:

$$\begin{array}{ccccc}
\frac{2}{x} & \frac{3}{y} & \frac{3}{z} & 10 \\
\frac{1}{x} & \frac{1}{y} & \frac{1}{z} & 10 \\
\frac{3}{x} & \frac{1}{y} & \frac{2}{z} & 13
\end{array}$$

28. Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius $5\sqrt{3}$ cm is (500) cm³.

Or

A window is in the form of a rectangle, surmounted by a semicircular opening. The total perimeter of the window is 10 metres. Find the dimensions of the window to admit maximum light through it.

29. A box contains 16 bulbs, out of which 4 bulbs are defective. 3 bulbs are drawn one by one from the box without replacement. Let *X* be the number of defective bulbs drawn. Find the mean and variance of *X*.

30. A manufacturer produces two types of steel trunks. He has two machines A and B. The first type of trunk requires 3 hours on machine A and 3 hours on machine B. The second type requires 3 hours on machine A and 2 hours on machine B. Machines A and B can work at most 18 hours and 15 hours per day respectively. He earns a profit of \ref{T} 30 and \ref{T} 25 per trunk of first and second type respectively. How many trunks of each type must he make each day to make maximum profit?

Or

Two tailors A and B, earn ₹300 and ₹400 per day respectively. A can stitch 6 shirts and 4 pairs of trousers per day while B can stitch 10 shirts and 4 pairs of trousers per day. How many days should each of them work if it is desired to produce at least 60 shirts and 32 pairs of trousers at a minimum labour cost?

 $\star\star\star$