Total No. of Printed Pages-11

2019

PHYSICS

(Theory)

Full Marks : 70

Time : 3 hours

The figures in the margin indicate full marks for the questions

General Instructions :

- (i) All questions are compulsory.
- (ii) All the answers are to be written in the Answer Script.
- (iii) There is no overall choice. However, internal choices have been provided in two questions of *two* marks, two questions of *three* marks and one question of *five* marks.
- (iv) Use of non-programmable ordinary scientific calculator and/or logarithmic table is allowed.
- (v) Use of Mobile Phones, Pagers and such other electronic gadgets is not allowed in the Examination Hall.

/63

- (2)
- (vi) Use the following values of physical constants wherever necessary : Speed of light in vacuum, $c = 3 \ 10^8 \text{ m s}^{-1}$ Planck's constant, $h = 6 \ 63 \ 10^{-34} \text{ J-s}$ Permittivity of free space, $_0 \ 8 \ 86 \ 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$ Permeability of free space, $_0 = 4 \ 10^{-7} \text{ T m A}^{-1}$ Mass of electron, $m_e = 9 \ 11 \ 10^{-31} \text{ kg}$ Mass of proton, $m_p = 1 \ 67 \ 10^{-27} \text{ kg}$ Electronic charge, $e = 1 \ 6 \ 10^{-19} \text{ C}$

GROUP—A

(Multiple choice type questions)

Choose and write the correct option for the following : $$\frac{1}{2}\times8=4$$

- 1. The force between two equal point charges separated by a certain distance is F. If the distance between them is doubled and their individual charges are also doubled, then the force between them is
 - (a) F
 - (b) 2F
 - (c) F/2
 - (d) F/4

- (3)
- **2.** An electric dipole of dipole moment \vec{p} is placed in a uniform electric field of strength \vec{E} . If is the angle between the positive direction of \vec{p} and \vec{E} , then potential energy of the dipole is largest when is
 - *(a)* 0°
 - *(b)* 90°
 - *(c)* 180°
 - *(d)* 45°
- **3.** A charged particle of mass m and charge q moves along a circular path with a velocity v perpendicular to a magnetic field \vec{B} . The radius of the circular path is
 - (a) $\frac{mv}{qB}$ (b) $\frac{mB}{qv}$ (c) $\frac{mq}{vB}$ (d) $\frac{qv}{mB}$

- (4)
- **4.** To convert a galvanometer into a voltmeter, we must connect a
 - (a) high resistance in parallel with the galvanometer
 - (b) high resistance in series with the galvanometer
 - (c) low resistance in parallel with the galvanometer
 - (d) low resistance in series with the galvanometer
- **5.** A step-up transformer operates on a 230 V line and supplies current of 2 A to a load. The ratio of the primary and secondary windings is 1:25. The current in the primary coil is
 - (a) 12.5 A
 - *(b)* 15 A
 - (c) 25 A
 - (d) 50 A
- **6.** When current changes from 2A to 2A in 0.05 s, an e.m.f. of 8 V is induced in a coil. The coefficient of self-induction of the coil is
 - *(a)* 0.8 H
 - *(b)* 0.4 H
 - (c) 0·1 H
 - (d) 0·2 H

- (5)
- 7. The displacements of interfering light waves are y_1 4 sin t and y_2 3 sin(t / 2). The amplitude of the resultant wave is
 - *(a)* 5
 - *(b)* 7
 - *(c)* 1
 - (d) 0
- **8.** The slits in Young's experiment have widths in the ratio 1:16. The ratio of maxima and minima in the interference pattern is
 - *(a)* 1:16
 - *(b)* 1:4
 - *(c)* 5:3
 - (d) 25:9

GROUP-B

(Very short answer type questions)

Answer the following questions in *one* sentence/step each : 1×8=8

9. Using an expression for drift velocity, show that the mobility of free electron is directly proportional to its relaxation time.

1

10. A wire of resistance 1000 and length *l* is increased to twice its original length. Calculate its new resistance.

(6)

11.	Name the electromagnetic radiation which is used—				
	(a) to kill cancerous cells in human;				
	(b) to produce dehydrated fruits.	$\frac{1}{2} + \frac{1}{2} =$	1		
12.	What is carrier wave?		1		
13.	What is diffraction of light?		1		
14.	What is the effect of intensity of incident light photoelectric current?	on	1		
15.	Mention one practical application of logic gates.		1		
16.	Why VHF, UHF and microwaves cannot transmitted by sky wave propagation?	be	1		

GROUP-C

(Short answer type-I questions)

Answer the following questions within 30 words each wherever applicable : $2 \times 8 = 16$

17.

Either

Use Gauss's theorem to derive an expression for electric field due to a uniformly charged spherical shell at a point outside the shell. 2

Or

Derive an expression for energy stored in a charged capacitor.

2

- **18.** Write down the condition of resonance in series L-C-R circuit and hence find an expression for the resonant frequency. $\frac{1}{2}+1\frac{1}{2}=2$
- **19.** An alternating source of e.m.f. $E = E_0 \sin t$ is applied to a circuit containing a capacitor only. Show that the current leads the e.m.f. by /2 radian.
- **20.** Using supplied value of $_0$ and $_0$, find the speed of electromagnetic waves in vacuum. 2
- 21.

Either

Two parallel wires carrying current in the same direction attract each other while two beams of electrons travelling in the same direction repel each other. Explain why.

Or

The wire loop *PQRSP* formed by joining two semi-circular wires of radii R_1 and R_2 carries a current *I* as shown in the figure below. Find the magnitude of magnetic field at *O*.

HS/XII/Sc/Ph/19**/63**

2

2

2

- 22. (a) What are isotones?
 - (b) $A \qquad A_1 \qquad A_2 \qquad A_3$

The mass number and atomic number of A are 180 and 72 respectively. What are these numbers for A_3 ?

- 23. A semiconductor has equal electron and hole concentration 6 10⁸ m³. On doping with a certain impurity, electron concentration increases to 9 10¹² m³. Calculate the new hole concentration. Also identify the new semiconductor. 1¹/₂+1[/]₂=2
- **24.** What is the basic principle of a rectifier? Draw a neat circuit diagram of a full-wave rectifier circuit. 1+1=2

GROUP-D

(Short answer type-II questions)

Answer the following questions within 30 to 40 words each wherever applicable : $3 \times 9=27$

- **25.** What is drift velocity of electrons? Show that electric current flowing through a conductor is directly proportional to the drift velocity. 1+2=3
- 26.

Either

Derive an expression for coefficient of mutual induction for two long solenoids. 3

Or

With the help of a phasor diagram, find an expression for impedance (Z) in a series *L*-*C*-*R* circuit.

HS/XII/Sc/Ph/19/63

(8)

1

1

3

- **27.** (*a*) Why do we prefer potentiometer to compare the e.m.f.s of cells than a voltmeter?
 - (b) Find I in the following circuit :

[Assume negligible internal resistance of the cell.]

- **28.** (a) Derive de Broglie wave equation for material particles.
 - (b) Why does photoelectric emission not take place if the frequency of incident radiation is less than threshold frequency?
- **29.** State radioactive decay law. Derive the relation $N N_0 e^{-t}$, where symbols have their usual meanings. 1+2=3

30.

Either

Using Huygens' principle, establish the laws of reflection. 3

Or

Find an expression for combined focal length of two thin coaxial convex lenses placed in contact.

HS/XII/Sc/Ph/19/63

(9)

1

3

2

2

1

(10)

31.	(a)	State the postulates of Bohr's theory of hydrogen atom.	2
	(b)	Name the series of hydrogen spectrum lying in ultraviolet and visible region. $\frac{1}{2}+\frac{1}{2}=$	=1
32.	Wit wor trar	h the help of labelled circuit diagram, explain the king of a transistor as an amplifier using <i>n-p-n</i> nsistor in CE configuration. 1+2=	=3
33.	(a)	Obtain an expression for the coverage range in space wave propagation in terms of height of the antenna.	2
	(b)	What is modulation factor?	1

GROUP-E

(Long answer type questions)

Answer the following questions in 70 to 80 words each wherever applicable : $5 \times 3=15$

34. Derive an expression for the electric potential at any point at a distance *r* from the centre of an electric dipole. Hence find the potential if the point lies on *(i)* axial line and *(ii)* equatorial line. $4+\frac{1}{2}+\frac{1}{2}=5$

- (11)
- **35.** Describe the principle and working of a moving-coil galvanometer and hence show that the deflection of the coil is directly proportional to the current flowing through it. What is the effect of the radial magnetic field in a moving-coil galvanometer? 1+3+1=5

Either

Derive lens maker formula for a thin convex lens. 5

Or

With the help of a neat diagram, explain the working of a compound microscope. Obtain an expression for its magnifying power when the final image is formed at least distance of distinct vision. 2+3=5

* * *

HS/XII/Sc/Ph/19/63

36.