2018

CHEMISTRY

(Theory)

Full Marks: 70

Pass Marks: 21

Time: Three hours

All the questions are compulsory.

The figures in the right margin indicate full marks for the questions.

(Question Nos. 1-10 are Very Short Answer (VSA) type of 1 mark each.)

What is rate law?
 Ferric hydroxide solution is coagulated by the addition of Na₃PO₄ solution. Which ion is responsible for this?
 Sulphide ores are concentrated by froth floatation process only. Why?
 Write the IUPAC name of the coordination compound,
 [Co(NH₃)₄ (NO₂) Cl] NO₃.

 Which one of C₆H₅Cl and C₆H₅ CH₂ Cl will react easily with aqueous KOH?

- 6. Salicylaldehyde is a product obtained by the action of CHCl₃ on C₆H₅OH in presence of aq. KOH. What is the name of the reaction?
- 7. Why is C₂H₅OH miscible with water?
- If one strand of a DNA has the sequence of bases TATCTACCTGGA. Write the sequence of bases on the complementary strand.
- What happens when D-glucose is heated with red phosphorus and HI?
- 10. When an egg is boiled, what happens to the soluble globular protien present in it?

Question Nos. 11-14 are Objective type carrying I mark each. Choose and rewrite the best answer out of the given alternatives.

- 11. For the reaction, $2A+B\longrightarrow 3C+D$, which of the following does \overline{NOT} express the reaction rate?
 - $A. \frac{-d[A]}{2 dt}$
 - B, $\frac{-d[B]}{dt}$
 - C, $\frac{-d[C]}{3 dt}$
 - $D. = \frac{-d[D]}{3 dt}$

12.	The catalyst used in the hydrogenation of oil is			
	A.	Fe Commence of the Commence of		
	В.	Nipale a sustaine of the Charles of		
	C.	Mo		
	D,	Sn.		
13.	Oxygen exhibits +2 oxidation state in the compound			
	A.	H ₂ O		
	В.	Na ₂ O	v.	
	C.	OF ₂		
	D.	MgO		
14.	In Cl	lemmensen reduction carbonyl compound is treated with	1	
	A	Zinc amalgam + HCl	2	
	В.	Sodium amalgam + HCl		
	C.	Zinc amalgam + HNO ₃		
	D.	Sodium amalgam + HNO ₃		
22 0	hm (T)	17/18	P.T.O.	

15.	What are rectifiers and transistors? How are they made?	2				
16.	Aluminium metal crystallises in a cubic structure in which the edge of the					
	unit cell is 405 pm. Determine the type of unit cell if the density of	Al is				
	2.7 g cm ⁻³ .	2				
17.	Calculate the molality and mole fraction of a solution containing 2.5g ethanoic					
	acid (CH ₃ COOH) in 75g of benzene.	2				
18.	Giving examples, define (i) homogeneous and (ii) hetrogeneous catalysis	s. 2				
19.	Describe the principles of (i) Liquation and (ii) Cupellation used for purific					
	of metals.	2				
20.	Explain the following:	-2				
	(i) Tailing of mercury					
	(ii) Strong reducing character of H ₃ PO ₃ .					
21.	Define transition elements. Zinc, Cadmium and Mercury belong to d-blo	ck of				
	the periodic table. But they are not considered as transition elements. W	hy?				
		2				
22.	Using the V.B.T. predict the shape and magnetic character of [Ni(CO) ₄].	2				
22 Ch	nm (T) 17/18 4 C	ontd.				

23.	Why are vitamins essential to us? Name the disease caused due to lack of				
	Vitamin-D.		2		
24.	Give one important	use for each of the following	ng in pharmacy. 2		
	(i) Equanil				
	(ii) Morphine				
Ques	tion Nos. 25-31 are	Short Answer (SA-I) type of	of 3 marks each.		
25.	What is an ideal solu	ition? What are the necess	sary conditions for a solution to		
	be ideal?	Telle final beaution	oncolestocate 3		
26.	For a reaction, the rate law, is Rate, $K = [X]^{\frac{1}{2}}[Y]$. Can this reaction be an				
	elementary reaction	?	3		
27.	Write the step-wise process for the preparation of K2Cr2O7 from chromite				
	ore.		and an and the 3		
28.	Convert 2-chlorobutane to:				
	(i) sec-butyl eth	yl ether			
	(ii) 2-Butanol		concentration of the T		
	(iii) 2-Butene				
29.	Draw the resonating	structures of phenol and pr	redict whether OH group is meta		
	directing or ortho a	nd para directing towards	electrophilic ring substitution		
	reactions.		annum regulate (a) 3		
22 Chm (T) 17/18		5	P.T.O.		

30. Write the structures of A, B and C in the following:

$$CH_3CI \xrightarrow{KCN} A \xrightarrow{LiAlH_4} B \xrightarrow{CH_3CHO} C$$
 3

31. Explain, with examples, classification of polymers based upon strucutres. 3

Question Nos. 32-34 are Essay (E) type of 5 marks each.

- (i) The resistivity of a 0-8 M solution of an electrolyte is 5×10⁻³ ohm cm.
 Calculate its molar conductivity.
 - (ii) Calculate the mass of hydrogen evolved by passing a current of 0.5 ampere for 40 minutes through acidified water.
 - (iii) Write the Nernst equation and calculate e.m.f. of the cell, $Mg(s) |Mg^{2+}(0\cdot001M)||Cu^{2+}(0\cdot0001M)||Cu(s)$ at 298K. Given E°cell = $2\cdot71$ volt. 1+2+2=5
- (a) On adding conc. H₂SO₄ to sugar a black mass is obtained. Identify the black mass.
 - (b) What is ring test? Write the chemical reaction involved in the ring test.
 - (c) Nitrogen is a gas whereas phosphorus is solid. Explain. 1+2+2=5

- 34. (a) Describe the following reactions.
 - (i) H.V.Z. reaction
 - (ii) Cannizzaro reaction
 - (iii) Rosenmund's reaction
 - (b) An organic compound C₂H₄O gives red precipitate when warmed with Fehling's solution. Give the IUPAC name of the compound and write the chemical equation for the reaction.
 3+2=5