FOREWORD

The SCERT Mizoram has always been committed in fulfilling its role as academic think-tank for providing quality education in the State. Our role as Academic Authority for elementary education has entrusted us with the responsibility of formulating the curriculum, textbooks and evaluation procedures. It is with pleasure that I announce the introduction of NCERT textbooks for Classes I – VIII which has been adapted and translated to be user friendly for learners of Mizoram.

On behalf of the SCERT, I express my gratitude to the NCERT, New Delhi for sharing the copyrights of the books and allowing us to translate the books into Mizo and to make necessary adaptations to make the books more meaningful for students of all Elementary Schools in Mizoram. I extend my sincere gratitude to scholars, educationists, experienced teachers and my colleagues who have contributed in formulating these new set of textbooks.

It is with hope that I hand over the books to teachers and students of Mizoram confident that the fundamentals of education and the recommendations of the National Curriculum Framework 2005 will be realised. We know from experience that learning is optimized when it is fun and the selection of child-friendly materials is assurance that learning becomes a pleasurable journey for the child.

Aizawl 15th Oct, 2018

LALDAWNGLIANI CHAWNGTHU Director, SCERT Mizoram: Aizawl

A Note for the Teacher

This is the third and the last book of this series. It is a continuation of the processes initiated to help the learners in abstraction of ideas and principles of mathematics. Our students to be able to deal with mathematical ideas and use them need to have the logical foundations to abstract and use postulates and construct new formulations. The main points reflected in the NCF-2005 suggest relating mathematics to development of wider abilities in children, moving away from complex calculations and algorithm following to understanding and constructing a framework of understanding. As you know, mathematical ideas do not develop by telling them. They also do not reach children by merely giving explanations. Children need their own framework of concepts and a classroom where they are discussing ideas, looking for solutions to problems, setting new problems and finding their own ways of solving problems and their own definitions.

As we have said before, it is important to help children to learn to read the textbook and other books related to mathematics with understanding. The reading of materials is clearly required to help the child learn further mathematics. In Class VIII please take stock of where the students have reached and give them more opportunities to read texts that use language with symbols and have brevity and terseness with no redundancy. For this if you can, please get them to read other texts as well. You could also have them relate the physics they learn and the equations they come across in chemistry to the ideas they have learnt in mathematics. These cross-disciplinary references would help them develop a framework and purpose for mathematics. They need to be able to reconstruct logical arguments and appreciate the need for keeping certain factors and constraints while they relate them to other areas as well. Class VIII children need to have opportunity for all this.

As we have already emphasised, mathematics at the Upper Primary Stage has to be close to the experience and environment of the child and be abstract at the same time. From the comfort of context and/or models linked to their experience they need to move towards working with ideas. Learning to abstract helps formulate and understand arguments. The capacity to see interrelations among concepts helps us deal with ideas in other subjects as well. It also helps us understand and make better patterns, maps, appreciate area and volume and see similarities between shapes and sizes. While this is regarding the relationship of other fields of knowledge to mathematics, its meaning in life and our environment needs to be re-emphasised.

Children should be able to identify the principles to be used in contextual situations, for solving problems sift through and choose the relevant information as the first important step. Once students do that they need to be able to find the way to use the knowledge they have and reach where the problem requires them to go. They need to identify and define a problem, select or design possible solutions and revise or redesign the steps, if required. As they go further there would be more to of this to be done. In Class VIII we have to get them to be conscious of the steps they follow. Helping children to develop the ability to construct appropriate models by breaking up the problems and evolving their own strategies and analysis of problems is extremely important. This is in the place of giving them prescriptive algorithms

Cooperative learning, learning through conversations, desire and capacity to learn from each other and the recognition that conversation is not noise and consultation not cheating is an important part of change in attitude for you as a teacher and for the students as well. They should be asked to make presentations as a group with the inclusion of examples from the contexts of their own experiences. They should be encouraged to read the book in groups and formulate and express what they understand from it. The assessment pattern has to recognise and appreciate this and the classroom groups should be such that all children enjoy being with each other and are contributing to the learning of the group. As you would have seen different groups use different strategies. Some of these are not as efficient as others as they reflect the modeling done and reflect the thinking used. All these are appropriate and need to be analysed with children. The exposure to a variety of strategies deepens the mathematical understanding. Each group moves from where it is and needs to be given an opportunity for that.

For conciseness we present the key ideas of mathematics learning that we would like you to remember in your classroom.

- 1. Enquiry to understand is one of the natural ways by which students acquire and construct knowledge. The process can use generation of observations to acquire knowledge. Students need to deal with different forms of questioning and challenging investigations- explorative, open-ended, contextual and even error detection from geometry, arithmetic and generalising it to algebraic relations etc.
- 2. Children need to learn to provide and follow logical arguments, find loopholes in the arguments presented and understand the requirement of a proof. By now children have entered the formal stage. They need to be encouraged to exercise creativity and imagination and to communicate their mathematical reasoning both verbally and in writing.
- 3. The mathematics classroom should relate language to learning of mathematics. Children should talk about their ideas using their experiences and language. They should be encouraged to use their own words and language but also gradually shift to formal language and use of symbols.
- 4. The number system has been taken to the level of generalisation of rational numbers and their properties and developing a framework that includes all previous systems as sub-sets of the generalised rational numbers. Generalisations are to be presented in mathematical language and children have to see that algebra and its language helps us express a lot of text in small symbolic forms.
- 5. As before children should be required to set and solve a lot of problems. We hope that as the nature of the problems set up by them becomes varied and more complex, they would become confident of the ideas they are dealing with.
- 6. Class VIII book has attempted to bring together the different aspects of mathematics and emphasise the commonality. Unitary method, Ratio and proportion, Interest and dividends are all part of one common logical framework. The idea of variable and equations is needed wherever we need to find an unknown quantity in any branch of mathematics.

We hope that the book will help children learn to enjoy mathematics and be confident in the concepts introduced. We want to recommend the creation of opportunity for thinking individually and collectively.

We look forward to your comments and suggestions regarding the book and hope that you will send interesting exercises, activities and tasks that you develop during the course of teaching, to be included in the future editions. This can only happen if you would find time to listen carefully to children and identify gaps and on the other hand also find the places where they can be given space to articulate their ideas and verbalise their thoughts.

Contents

	Foreword	v
	Notes for teacher	vii
Chapter 1	Rational Numbers	1
Chapter 2	Linear Equations in One Variable	21
Chapter 3	Understanding Quadrilaterals	37
Chapter 4	Practical Geometry	57
Chapter 5	Data Handling	69
Chapter 6	Squares and Square Roots	89
Chapter 7	Cubes and Cube Roots	109
Chapter 8	Comparing Quantities	117
Chapter 9	Algebraic Expressions and Identities	137
Chapter 10	Visualising Solid Shapes	153
Chapter 11	Mensuration	169
Chapter 12	Exponents and Powers	193
Chapter 13	Direct and Inverse Proportions	201
Chapter 14	Factorisation	217
Chapter 15	Introduction to Graphs	231
Chapter 16	Playing with Numbers	249
	Answers	261
	Just for Fun	275
	Project	277

CHAPTER

Rational Numbers

1.1 Introduction

In Mathematics, we frequently come across simple equations to be solved. For example, the equation x + 2 = 13 (1)

is solved when x = 11, because this value of x satisfies the given equation. The solution 11 is a **natural number**. On the other hand, for the equation

$$x + 5 = 5 \tag{2}$$

the solution gives the **whole number** 0 (zero). If we consider only natural numbers, equation (2) cannot be solved. To solve equations like (2), we added the number zero to the collection of natural numbers and obtained the whole numbers. Even whole numbers will not be sufficient to solve equations of type

$$x + 18 = 5$$
 (3)

Do you see why? We require the number -13 which is not a whole number. This led us to think of **integers**, (**positive and negative**). Note that the positive integers correspond to natural numbers. One may think that we have enough numbers to solve all simple equations with the available list of integers. Consider the equations

$$2x = 3 \tag{4}$$

$$5x + 7 = 0$$

for which we cannot find a solution from the integers. (Check this)

We need the numbers $\frac{3}{2}$ to solve equation (4) and $\frac{-7}{5}$ to solve equation (5). This leads us to the collection of **rational numbers**.

We have already seen basic operations on rational numbers. We now try to explore some properties of operations on the different types of numbers seen so far.

1.2 Properties of Rational Numbers

1.2.1 Closure

(i) Whole numbers

Let us revisit the closure property for all the operations on whole numbers in brief.

Operation	Numbers	Remarks
Addition	0 + 5 = 5, a whole number 4 + 7 = Is it a whole number? In general, $a + b$ is a whole number for any two whole numbers a and b.	Whole numbers are closed under addition.
Subtraction	5-7 = -2, which is not a whole number.	Whole numbers are not closed under subtraction.
Multiplication	$0 \times 3 = 0$, a whole number $3 \times 7 =$ Is it a whole number? In general, if <i>a</i> and <i>b</i> are any two whole numbers, their product <i>ab</i> is a whole number.	Whole numbers are closed under multiplication.
Division	$5 \div 8 = \frac{5}{8}$, which is not a whole number.	Whole numbers are not closed under division.

Check for closure property under all the four operations for natural numbers.

(ii) Integers

Let us now recall the operations under which integers are closed.

Operation	Numbers	Remarks
Addition	-6+5=-1, an integer Is $-7+(-5)$ an integer? Is $8+5$ an integer? In general, $a+b$ is an integer for any two integers a and b.	Integers are closed under addition.
Subtraction	7-5=2, an integer Is $5-7$ an integer? -6-8=-14, an integer	Integers are closed under subtraction.

	-6-(-8) = 2, an integer Is $8-(-6)$ an integer? In general, for any two integers <i>a</i> and <i>b</i> , $a-b$ is again an integer. Check if $b-a$ is also an integer.		Į
Multiplication	$5 \times 8 = 40$, an integer Is -5×8 an integer? $-5 \times (-8) = 40$, an integer In general, for any two integers <i>a</i> and <i>b</i> , <i>a</i> × <i>b</i> is also an integer.	Integers are closed under multiplication.	
Division	$5 \div 8 = \frac{5}{8}$, which is not an integer.	Integers are not closed under division.	

You have seen that whole numbers are closed under addition and multiplication but not under subtraction and division. However, integers are closed under addition, subtraction and multiplication but not under division.

(iii) Rational numbers

Recall that a number which can be written in the form $\frac{p}{q}$, where *p* and *q* are integers and $q \neq 0$ is called a **rational number**. For example, $-\frac{2}{3}$, $\frac{6}{7}$ are all rational numbers. Since the numbers 0, -2, 4 can be written in the form $\frac{p}{q}$, they are also rational numbers. (Check it!)

(a) You know how to add two rational numbers. Let us add a few pairs.

$$\frac{3}{8} + \frac{(-5)}{7} = \frac{21 + (-40)}{56} = \frac{-19}{56}$$
 (a rational number)
$$\frac{-3}{8} + \frac{(-4)}{5} = \frac{-15 + (-32)}{40} = \dots$$
 Is it a rational number?
$$\frac{4}{7} + \frac{6}{11} = \dots$$
 Is it a rational number?

We find that sum of two rational numbers is again a rational number. Check it for a few more pairs of rational numbers.

We say that rational numbers are closed under addition. That is, for any two rational numbers a and b, a + b is also a rational number.

(b) Will the difference of two rational numbers be again a rational number? We have,

$$\frac{-5}{7} - \frac{2}{3} = \frac{-5 \times 3 - 2 \times 7}{21} = \frac{-29}{21}$$
 (a rational number)

4 MATHEMATICS

$$\frac{5}{8} - \frac{4}{5} = \frac{25 - 32}{40} = \dots$$
 Is it a rational number?
$$\frac{3}{7} - \left(\frac{-8}{5}\right) = \dots$$
 Is it a rational number?

Try this for some more pairs of rational numbers. We find that *rational numbers* are closed under subtraction. That is, for any two rational numbers a and b, a - b is also a rational number.

(c) Let us now see the product of two rational numbers.

$$\frac{-2}{3} \times \frac{4}{5} = \frac{-8}{15}; \frac{3}{7} \times \frac{2}{5} = \frac{6}{35}$$
 (both the products are rational numbers)

$$\frac{4}{5} \times \frac{-6}{11} = \dots$$
 Is it a rational number?

Take some more pairs of rational numbers and check that their product is again a rational number.

We say that rational numbers are closed under multiplication. That is, for any two rational numbers a and b, $a \times b$ is also a rational number.

(d) We note that
$$\frac{-5}{3} \div \frac{2}{5} = \frac{-25}{6}$$
 (a rational number)
 $\frac{2}{7} \div \frac{5}{3} = \dots$ Is it a rational number? $\frac{-3}{8} \div \frac{-2}{9} = \dots$ Is it a rational number?

Can you say that rational numbers are closed under division?

We find that for any rational number $a, a \div 0$ is **not defined**.

So rational numbers are **not closed** under division.

However, if we exclude zero then the collection of, all other rational numbers is closed under division.

TRY THESE

Fill in the blanks in the following table.

Numbers	Closed under					
	addition	division				
Rational numbers	Yes	Yes		No		
Integers		Yes		No		
Whole numbers			Yes			
Natural numbers		No)		

1.2.2 Commutativity

(i) Whole numbers

Recall the commutativity of different operations for whole numbers by filling the following table.

Operation	Numbers	Remarks
Addition	0 + 7 = 7 + 0 = 7 2 + 3 = + = For any two whole numbers <i>a</i> and <i>b</i> , a + b = b + a	Addition is commutative.
Subtraction		Subtraction is not commutative.
Multiplication		Multiplication is commutative.
Division		Division is not commutative.

Check whether the commutativity of the operations hold for natural numbers also.

(ii) Integers

Fill in the following table and check the commutativity of different operations for integers:

Operation	Numbers	Remarks
Addition		Addition is commutative.
Subtraction	Is $5 - (-3) = -3 - 5$?	Subtraction is not commutative.
Multiplication		Multiplication is commutative.
Division		Division is not commutative.

(iii) Rational numbers

(a) Addition

You know how to add two rational numbers. Let us add a few pairs here.

$$\frac{-2}{3} + \frac{5}{7} = \frac{1}{21}$$
 and $\frac{5}{7} + \left(\frac{-2}{3}\right) = \frac{1}{21}$

So,

$$3 \quad 7 \quad 7 \quad (3)$$

 $\frac{-6}{5} + \left(\frac{-8}{3}\right) = \dots \text{ and } \frac{-8}{3} + \left(\frac{-6}{5}\right) = \dots$

Also,

 $\frac{-6}{5} + \left(\frac{-8}{3}\right) = \left(\frac{-8}{3}\right) + \left(\frac{-6}{5}\right)?$

 $\frac{-2}{-2} + \frac{5}{-2} = \frac{5}{-2} + \left(\frac{-2}{-2}\right)$

Is

$$\frac{-3}{8} + \frac{1}{7} = \frac{1}{7} + \left(\frac{-3}{8}\right)?$$

You find that two rational numbers can be added in any order. We say that addition is commutative for rational numbers. That is, for any two rational numbers a and b, a + b = b + a.

(b) Subtraction

Is

T.	$\frac{2}{2}$	_ 5 _	_ 5	_2
Is	$\overline{3}$	4	4	$-\frac{2}{3}?$
L	1	_ 3 _	_ 3 _	$-\frac{1}{2}$
Is	$\overline{2}$	5	$=\frac{1}{5}$	$\frac{1}{2}$

You will find that subtraction is not commutative for rational numbers.

(c) Multiplication

We have, $\frac{-7}{3} \times \frac{6}{5} = \frac{-42}{15} = \frac{6}{5} \times \left(\frac{-7}{3}\right)$ Is $\frac{-8}{9} \times \left(\frac{-4}{7}\right) = \frac{-4}{7} \times \left(\frac{-8}{9}\right)$?

Check for some more such products.

You will find that *multiplication is commutative for rational numbers*. In general, $a \times b = b \times a$ for any two rational numbers a and b.

(d) Division

Is

Complete the following table.

$$\frac{-5}{4} \div \frac{3}{7} = \frac{3}{7} \div \left(\frac{-5}{4}\right)?$$

You will find that expressions on both sides are not equal. So division is **not commutative** for rational numbers.

TRY THESE

complete the ronowing table.							
Numbers	Commutative for						
	addition subtraction multiplication division						
Rational numbers	Yes						
Integers		No					
Whole numbers			Yes				
Natural numbers				No			

1.2.3 Associativity

(i) Whole numbers

Recall the associativity of the four operations for whole numbers through this table:

Operation	Numbers	Remarks
Addition		Addition is associative
Subtraction		Subtraction is not associative
Multiplication	Is $7 \times (2 \times 5) = (7 \times 2) \times 5$? Is $4 \times (6 \times 0) = (4 \times 6) \times 0$? For any three whole numbers a, b and c $a \times (b \times c) = (a \times b) \times c$	Multiplication is associative
Division		Division is not associative

Fill in this table and verify the remarks given in the last column.

Check for yourself the associativity of different operations for natural numbers.

(ii) Integers

Associativity of the four operations for integers can be seen from this table

Operation	Numbers	Remarks	
Addition	Is $(-2) + [3 + (-4)]$	Addition is associative	
	= [(-2) + 3)] + (-4)?		And a
	Is $(-6) + [(-4) + (-5)]$		(in)
	= [(-6) + (-4)] + (-5)?		501
	For any three integers <i>a</i> , <i>b</i> and <i>c</i>		3
	a + (b + c) = (a + b) + c		
Subtraction	Is $5 - (7 - 3) = (5 - 7) - 3$?	Subtraction is not associative	Y
Multiplication	Is $5 \times [(-7) \times (-8)$	Multiplication is associative	
	$= [5 \times (-7)] \times (-8)?$		
	Is $(-4) \times [(-8) \times (-5)]$		
	$= [(-4) \times (-8)] \times (-5)?$		
	For any three integers a, b and c		
	$a \times (b \times c) = (a \times b) \times c$		
Division	Is $[(-10) \div 2] \div (-5)$	Division is not associative	
	$= (-10) \div [2 \div (-5)]?$		J

(iii) Rational numbers

(a) Addition

We have

$$\frac{-2}{3} + \left[\frac{3}{5} + \left(\frac{-5}{6}\right)\right] = \frac{-2}{3} + \left(\frac{-7}{30}\right) = \frac{-27}{30} = \frac{-9}{10}$$

$$\left[\frac{-2}{3} + \frac{3}{5}\right] + \left(\frac{-5}{6}\right) = \frac{-1}{15} + \left(\frac{-5}{6}\right) = \frac{-27}{30} = \frac{-9}{10}$$
So,
$$\frac{-2}{3} + \left[\frac{3}{5} + \left(\frac{-5}{6}\right)\right] = \left[\frac{-2}{3} + \frac{3}{5}\right] + \left(\frac{-5}{6}\right)$$

Find $\frac{-1}{2} + \left\lfloor \frac{3}{7} + \left(\frac{-4}{3} \right) \right\rfloor$ and $\left\lfloor \frac{-1}{2} + \frac{3}{7} \right\rfloor + \left(\frac{-4}{3} \right)$. Are the two sums equal?

Take some more rational numbers, add them as above and see if the two sums are equal. We find that *addition is associative for rational numbers*. *That is, for any three rational numbers a, b* and *c*, a + (b + c) = (a + b) + c.

(b) Subtraction

T	-2_	4	1	_	2_	$\left(\frac{-4}{5}\right)^{-1}$	1_{2}
ls	3	5	$\boxed{2}$		3	$\left(\frac{1}{5} \right)$	$\left \frac{-2}{2}\right $

Check for yourself.

Subtraction is **not associative** for rational numbers.

(c) Multiplication

Let us check the associativity for multiplication.

$$\frac{-7}{3} \times \left(\frac{5}{4} \times \frac{2}{9}\right) = \frac{-7}{3} \times \frac{10}{36} = \frac{-70}{108} = \frac{-35}{54}$$
$$\left(\frac{-7}{3} \times \frac{5}{4}\right) \times \frac{2}{9} = \dots$$

We find that

$$\frac{-7}{3} \times \left(\frac{5}{4} \times \frac{2}{9}\right) = \left(\frac{-7}{3} \times \frac{5}{4}\right) \times \frac{2}{9}$$

 $\frac{2}{3} \times \left(\frac{-6}{7} \times \frac{4}{5}\right) = \left(\frac{2}{3} \times \frac{-6}{7}\right) \times \frac{4}{5}?$

Is

Take some more rational numbers and check for yourself.

We observe that *multiplication is associative for rational numbers*. That is for any three rational numbers a, b and $c, a \times (b \times c) = (a \times b) \times c$.

(d) Division

Let us see if
$$\frac{1}{2} \div \left[\frac{-1}{3} \div \frac{2}{5}\right] = \left[\frac{1}{2} \div \left(\frac{-1}{2}\right)\right] \div \frac{2}{5}$$

We have, LHS $= \frac{1}{2} \div \left(\frac{-1}{3} \div \frac{2}{5}\right) = \frac{1}{2} \div \left(\frac{-1}{3} \times \frac{5}{2}\right)$ (reciprocal of $\frac{2}{5}$ is $\frac{5}{2}$)
 $= \frac{1}{2} \div \left(-\frac{5}{6}\right) = \dots$
RHS $= \left[\frac{1}{2} \div \left(\frac{-1}{3}\right)\right] \div \frac{2}{5}$
 $= \left(\frac{1}{2} \times \frac{-3}{1}\right) \div \frac{2}{5} = \frac{-3}{2} \div \frac{2}{5} = \dots$

Is LHS = RHS? Check for yourself. You will find that division is **not associative** for rational numbers.

TRY THESE

Complete the following table:

Numbers	Associative for									
	addition	subtraction	multiplication	division						
Rational numbers				No						
Integers			Yes							
Whole numbers	Yes									
Natural numbers		Yes								

Example 1: Find
$$\frac{3}{7} + \left(\frac{-6}{11}\right) + \left(\frac{-8}{21}\right) + \left(\frac{5}{22}\right)$$

Solution: $\frac{3}{7} + \left(\frac{-6}{11}\right) + \left(\frac{-8}{21}\right) + \left(\frac{5}{22}\right)$
 $= \frac{198}{100} + \left(\frac{-252}{20}\right) + \left(\frac{-176}{20}\right) + \left(\frac{105}{20}\right)$ (Note that

 $= \frac{198}{462} + \left(\frac{-252}{462}\right) + \left(\frac{-176}{462}\right) + \left(\frac{105}{462}\right)$ (Note that 462 is the LCM of 7, 11, 21 and 22)

$$=\frac{198-252-176+105}{462}=\frac{-125}{462}$$

We can also solve it as.

$$\frac{3}{7} + \left(\frac{-6}{11}\right) + \left(\frac{-8}{21}\right) + \frac{5}{22}$$

$$= \left[\frac{3}{7} + \left(\frac{-8}{21}\right)\right] + \left[\frac{-6}{11} + \frac{5}{22}\right] \qquad \text{(by using commutativity and associativity)}$$

$$= \left[\frac{9 + (-8)}{21}\right] + \left[\frac{-12 + 5}{22}\right] \qquad \text{(LCM of 7 and 21 is 21; LCM of 11 and 22 is 22)}$$

$$= \frac{1}{21} + \left(\frac{-7}{22}\right) = \frac{22 - 147}{462} = \frac{-125}{462}$$

Do you think the properties of commutativity and associativity made the calculations easier?

Example 2: Find
$$\frac{-4}{5} \times \frac{3}{7} \times \frac{15}{16} \times \left(\frac{-14}{9}\right)$$

Solution: We have

$$\frac{-4}{5} \times \frac{3}{7} \times \frac{15}{16} \times \left(\frac{-14}{9}\right)$$
$$= \left(-\frac{4 \times 3}{5 \times 7}\right) \times \left(\frac{15 \times (-14)}{16 \times 9}\right)$$
$$= \frac{-12}{35} \times \left(\frac{-35}{24}\right) = \frac{-12 \times (-35)}{35 \times 24} = \frac{1}{2}$$

We can also do it as.

$$\frac{-4}{5} \times \frac{3}{7} \times \frac{15}{16} \times \left(\frac{-14}{9}\right)$$
$$= \left(\frac{-4}{5} \times \frac{15}{16}\right) \times \left[\frac{3}{7} \times \left(\frac{-14}{9}\right)\right] \text{ (Using commutativity and associativity)}$$
$$= \frac{-3}{4} \times \left(\frac{-2}{3}\right) = \frac{1}{2}$$

1.2.4 The role of zero (0)

Look at the following.

$$2 + 0 = 0 + 2 = 2$$

-5 + 0 = ... + ... = -5
$$\frac{-2}{7} + ... = 0 + \left(\frac{-2}{7}\right) = \frac{-2}{7}$$

(Addition of 0 to a whole number) (Addition of 0 to an integer)

(Addition of 0 to a rational number)

You have done such additions earlier also. Do a few more such additions.

What do you observe? You will find that when you add 0 to a whole number, the sum is again that whole number. This happens for integers and rational numbers also.

In general, a + 0 = 0 + a = a, where *a* is a whole number b + 0 = 0 + b = b, where *b* is an integer c + 0 = 0 + c = c, where *c* is a rational number

Zero is called the identity for the addition of rational numbers. It is the additive identity for integers and whole numbers as well.

1.2.5 The role of 1

We have,

 $5 \times 1 = 5 = 1 \times 5$ (Multiplication of the second second

(Multiplication of 1 with a whole number)

$$\frac{-2}{7} \times 1 = \dots \times \dots = \frac{-2}{7}$$
$$\frac{3}{8} \times \dots = 1 \times \frac{3}{8} = \frac{3}{8}$$

What do you find?

You will find that when you multiply any rational number with 1, you get back that rational number as the product. Check this for a few more rational numbers. You will find that, $a \times 1 = 1 \times a = a$ for any rational number a.

We say that 1 is the multiplicative identity for rational numbers.

Is 1 the multiplicative identity for integers? For whole numbers?

THINK, DISCUSS AND WRITE

If a property holds for rational numbers, will it also hold for integers? For whole numbers? Which will? Which will not?

1.2.6 Negative of a number

While studying integers you have come across negatives of integers. What is the negative of 1? It is -1 because 1 + (-1) = (-1) + 1 = 0

So, what will be the negative of (-1)? It will be 1.

Also, 2 + (-2) = (-2) + 2 = 0, so we say 2 is the **negative or additive inverse** of -2 and vice-versa. In general, for an integer *a*, we have, a + (-a) = (-a) + a = 0; so, *a* is the negative of -a and -a is the negative of *a*.

For the rational number $\frac{2}{3}$, we have,

$$\frac{2}{3} + \left(-\frac{2}{3}\right) = \frac{2 + (-2)}{3} = 0$$

Also,

Similarly,

$$\left(-\frac{2}{3}\right) + \frac{2}{3} = 0$$
 (How?)
 $\frac{-8}{9} + \dots = \dots + \left(\frac{-8}{9}\right) = 0$

$$\dots + \left(\frac{-11}{7}\right) = \left(\frac{-11}{7}\right) + \dots = 0$$

In general, for a rational number $\frac{a}{b}$, we have, $\frac{a}{b} + \left(-\frac{a}{b}\right) = \left(-\frac{a}{b}\right) + \frac{a}{b} = 0$. We say

that
$$-\frac{a}{b}$$
 is the additive inverse of $\frac{a}{b}$ and $\frac{a}{b}$ is the additive inverse of $\left(-\frac{a}{b}\right)$.

1.2.7 Reciprocal

By which rational number would you multiply $\frac{8}{21}$, to get the product 1? Obviously by

 $\frac{21}{8}$, since $\frac{8}{21} \times \frac{21}{8} = 1$. Similarly, $\frac{-5}{7}$ must be multiplied by $\frac{7}{-5}$ so as to get the product 1.

We say that
$$\frac{21}{8}$$
 is the reciprocal of $\frac{8}{21}$ and $\frac{7}{-5}$ is the reciprocal of $\frac{-5}{7}$.

Can you say what is the reciprocal of 0 (zero)? Is there a rational number which when multiplied by 0 gives 1? Thus, zero has no reciprocal. We say that a rational number $\frac{c}{d}$ is called the **reciprocal** or **multiplicative inverse** of another rational number $\frac{a}{b}$ if $\frac{a}{b} \times \frac{c}{d} = 1$.

1.2.8 Distributivity of multiplication over addition for rational numbers

To understand this, consider the rational numbers $\frac{-3}{4}$, $\frac{2}{3}$ and $\frac{-5}{6}$. $\frac{-3}{4} \times \left\{ \frac{2}{3} + \left(\frac{-5}{6} \right) \right\} = \frac{-3}{4} \times \left\{ \frac{(4) + (-5)}{6} \right\}$ $=\frac{-3}{4} \times \left(\frac{-1}{6}\right) = \frac{3}{24} = \frac{1}{8}$ $\frac{-3}{4} \times \frac{2}{3} = \frac{-3 \times 2}{4 \times 3} = \frac{-6}{12} = \frac{-1}{2}$

Also

Distributivity of Multi-

plication over Addition

For all rational numbers a, b

and Subtraction.

a (b + c) = ab + aca (b - c) = ab - ac

When you use distributivity, you

split a product as a sum or

difference of two products.

and c,

(ii) $\left\{\frac{9}{16} \times \frac{4}{12}\right\} + \left\{\frac{9}{16} \times \frac{-3}{9}\right\}$

And
$$\frac{-3}{4} \times \frac{-5}{6} = \frac{5}{8}$$

Therefore

Thus,

TRY THESE

 $\left(\frac{-3}{4} \times \frac{2}{3}\right) + \left(\frac{-3}{4} \times \frac{-5}{6}\right) = \frac{-1}{2} + \frac{5}{8} = \frac{1}{8}$

 $\frac{-3}{4} \times \left\{ \frac{2}{3} + \frac{-5}{6} \right\} = \left(\frac{-3}{4} \times \frac{2}{3} \right) + \left(\frac{-3}{4} \times \frac{-5}{6} \right)$

Find using distributivity. (i)
$$\left\{\frac{7}{5} \times \left(\frac{-3}{12}\right)\right\} + \left\{\frac{7}{5} \times \frac{5}{12}\right\}$$

Example 3: Write the additive inverse of the following:

(i) $\frac{-7}{19}$ (ii) $\frac{21}{112}$

(i)
$$\frac{7}{19}$$
 is the additive inverse of $\frac{-7}{19}$ because $\frac{-7}{19} + \frac{7}{19} = \frac{-7+7}{19} = \frac{0}{19} = 0$

(ii) The additive inverse of
$$\frac{21}{112}$$
 is $\frac{-21}{112}$ (Check!)

Example 4: Verify that -(-x) is the same as x for

(i)
$$x = \frac{13}{17}$$
 (ii) $x = \frac{-21}{31}$

Solution: (i) We have, $x = \frac{13}{17}$ The additive inverse of $x = \frac{13}{17}$ is $-x = \frac{-13}{17}$ since $\frac{13}{17} + \left(\frac{-13}{17}\right) = 0$.

The same equality $\frac{13}{17} + \left(\frac{-13}{17}\right) = 0$, shows that the additive inverse of $\frac{-13}{17}$ is $\frac{13}{17}$

or
$$-\left(\frac{-13}{17}\right) = \frac{13}{17}$$
, i.e., $-(-x) = x$.

(ii) Additive inverse of $x = \frac{-21}{31}$ is $-x = \frac{21}{31}$ since $\frac{-21}{31} + \frac{21}{31} = 0$. The same equality $\frac{-21}{31} + \frac{21}{31} = 0$, shows that the additive inverse of $\frac{21}{31}$ is $\frac{-21}{31}$, i.e., -(-x) = x.

14 MATHEMATICS

Example 5: Find
$$\frac{2}{5} \times \frac{-3}{7} - \frac{1}{14} - \frac{3}{7} \times \frac{3}{5}$$

Solution: $\frac{2}{5} \times \frac{-3}{7} - \frac{1}{14} - \frac{3}{7} \times \frac{3}{5} = \frac{2}{5} \times \frac{-3}{7} - \frac{3}{7} \times \frac{3}{5} - \frac{1}{14}$ (by commutativity)
 $= \frac{2}{5} \times \frac{-3}{7} + \left(\frac{-3}{7}\right) \times \frac{3}{5} - \frac{1}{14}$
 $= \frac{-3}{7} \left(\frac{2}{5} + \frac{3}{5}\right) - \frac{1}{14}$ (by distributivity)
 $= \frac{-3}{7} \times 1 - \frac{1}{14} = \frac{-6 - 1}{14} = \frac{-1}{2}$

EXERCISE 1.1

1. Using appropriate properties find.

(i)
$$-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$$
 (ii) $\frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$

Write the additive inverse of each of the following.

(i)
$$\frac{2}{8}$$
 (ii) $\frac{-5}{9}$ (iii) $\frac{-6}{-5}$ (iv) $\frac{2}{-9}$ (v) $\frac{19}{-6}$

3. Verify that -(-x) = x for.

(i)
$$x = \frac{11}{15}$$
 (ii) $x = -\frac{13}{17}$

4. Find the multiplicative inverse of the following.

(i)
$$-13$$
 (ii) $\frac{-13}{19}$ (iii) $\frac{1}{5}$ (iv) $\frac{-5}{8} \times \frac{-3}{7}$
(v) $-1 \times \frac{-2}{5}$ (vi) -1

5. Name the property under multiplication used in each of the following.

- (i) $\frac{-4}{5} \times 1 = 1 \times \frac{-4}{5} = -\frac{4}{5}$ (ii) $-\frac{13}{17} \times \frac{-2}{7} = \frac{-2}{7} \times \frac{-13}{17}$ (iii) $\frac{-19}{29} \times \frac{29}{-19} = 1$ 6. Multiply $\frac{6}{13}$ by the reciprocal of $\frac{-7}{16}$.
- 7. Tell what property allows you to compute $\frac{1}{3} \times \left(6 \times \frac{4}{3}\right) \operatorname{as}\left(\frac{1}{3} \times 6\right) \times \frac{4}{3}$. 8. Is $\frac{8}{9}$ the multiplicative inverse of $-1\frac{1}{8}$? Why or why not?
- 9. Is 0.3 the multiplicative inverse of $3\frac{1}{3}$? Why or why not?

10. Write.

- (i) The rational number that does not have a reciprocal.
- (ii) The rational numbers that are equal to their reciprocals.
- (iii) The rational number that is equal to its negative.

11. Fill in the blanks.

- (i) Zero has <u>reciprocal</u>.
- (ii) The numbers ______ and _____ are their own reciprocals
- (iii) The reciprocal of -5 is _____.
- (iv) Reciprocal of $\frac{1}{x}$, where $x \neq 0$ is _____.
- (v) The product of two rational numbers is always a _____.
- (vi) The reciprocal of a positive rational number is _____.

1.3 Representation of Rational Numbers on the Number Line

The point on the number line (iv) which is half way between 0 and 1 has been labelled $\frac{1}{2}$. Also, the first of the equally spaced points that divides the distance between 0 and 1 into three equal parts can be labelled $\frac{1}{3}$, as on number line (v). How would you

label the second of these division points on number line (v)?

16 MATHEMATICS

The point to be labelled is twice as far from and to the right of 0 as the point labelled $\frac{1}{3}$. So it is two times $\frac{1}{3}$, i.e., $\frac{2}{3}$. You can continue to label equally-spaced points on the number line in the same way. The next marking is 1. You can see that 1 is the same as $\frac{3}{3}$.

Then comes
$$\frac{4}{3}, \frac{5}{3}, \frac{6}{3}$$
 (or 2), $\frac{7}{3}$ and so on as shown on the number line (vi)

Similarly, to represent $\frac{1}{8}$, the number line may be divided into eight equal parts as shown: \leftarrow

We use the number $\frac{1}{8}$ to name the first point of this division. The second point of

division will be labelled $\frac{2}{8}$, the third point $\frac{3}{8}$, and so on as shown on number line(vii)

Any rational number can be represented on the number line in this way. In a rational number, the numeral below the bar, i.e., the denominator, tells the number of equal parts into which the first unit has been divided. The numeral above the bar i.e., the numerator, tells 'how many' of these parts are considered. So, a rational number

such as $\frac{4}{9}$ means four of nine equal parts on the right of 0 (number line viii) and

for $\frac{-7}{4}$, we make 7 markings of distance $\frac{1}{4}$ each on the *left* of zero and starting

from 0. The seventh marking is $\frac{-7}{4}$ [number line (ix)].

(viii)
$$\begin{array}{c} & \begin{array}{c} & 1 \\ 0 \\ \hline 1 \\ \hline 9 \\$$

TRY THESE

Write the rational number for each point labelled with a letter.

(i)	_		A			B	C			D	E				
		0	?	2	3	?	?	6	7	?	?	10	11	12	
		5		5	5			5	5			5	5	5	
(ji)	_	•	J			Ι	Н		G			F			
(II)		$\frac{-12}{6}$?=	<u>- 10</u>	_9	?	?	<u> </u>	. ?	<u>-4</u>	_3	- ?	1	0	
		6	•	6	6	•	•	6	•	6	6	•	6	6	

1.4 Rational Numbers between Two Rational Numbers

Can you tell the natural numbers between 1 and 5? They are 2, 3 and 4. How many natural numbers are there between 7 and 9? There is one and it is 8. How many natural numbers are there between 10 and 11? Obviously none. List the integers that lie between -5 and 4. They are -4, -3, -2, -1, 0, 1, 2, 3. How many integers are there between -1 and 1? How many integers are there between -9 and -10?

You will find a definite number of natural numbers (integers) between two natural numbers (integers).

How many rational numbers are there between $\frac{3}{10}$ and $\frac{7}{10}$? You may have thought that they are only $\frac{4}{10}$, $\frac{5}{10}$ and $\frac{6}{10}$. But you can also write $\frac{3}{10}$ as $\frac{30}{100}$ and $\frac{7}{10}$ as $\frac{70}{100}$. Now the numbers, $\frac{31}{100}$, $\frac{32}{100}$, $\frac{33}{100}$, $\dots \frac{68}{100}$, $\frac{69}{100}$, are all between $\frac{3}{10}$ and $\frac{7}{10}$. The number of these rational numbers is 39. Also $\frac{3}{10}$ can be expressed as $\frac{3000}{10000}$ and $\frac{7}{10}$ as $\frac{7000}{10000}$. Now, we see that the rational numbers $\frac{3001}{10000}$, $\frac{3002}{10000}$, \dots , $\frac{6998}{10000}$, $\frac{6999}{10000}$ are between $\frac{3}{10}$ and $\frac{7}{10}$. These

are 3999 numbers in all.

In this way, we can go on inserting more and more rational numbers between $\frac{3}{10}$ and $\frac{7}{10}$. So unlike natural numbers and integers, the number of rational numbers between two rational numbers is not definite. Here is one more example.

How many rational numbers are there between $\frac{-1}{10}$ and $\frac{3}{10}$?

Obviously $\frac{0}{10}$, $\frac{1}{10}$, $\frac{2}{10}$ are rational numbers between the given numbers.

If we write
$$\frac{-1}{10}$$
 as $\frac{-10000}{100000}$ and $\frac{3}{10}$ as $\frac{30000}{100000}$, we get the rational numbers $\frac{-9999}{100000}$, $\frac{-9998}{100000}$, ..., $\frac{-29998}{100000}$, $\frac{29999}{100000}$, between $\frac{-1}{10}$ and $\frac{3}{10}$.

You will find that you get countless rational numbers between any two given rational numbers.

Example 6: Write any 3 rational numbers between –2 and 0.

Solution: -2 can be written as $\frac{-20}{10}$ and 0 as $\frac{0}{10}$. Thus we have $\frac{-19}{10}, \frac{-18}{10}, \frac{-17}{10}, \frac{-16}{10}, \frac{-15}{10}, \dots, \frac{-1}{10}$ between -2 and 0.

You can take any three of these.

Example 7: Find any ten rational numbers between $\frac{-5}{6}$ and $\frac{5}{8}$.

Solution: We first convert $\frac{-5}{6}$ and $\frac{5}{8}$ to rational numbers with the same denominators.

$$\frac{-5 \times 4}{6 \times 4} = \frac{-20}{24}$$
 and $\frac{5 \times 3}{8 \times 3} = \frac{15}{24}$

Thus we have $\frac{-19}{24}$, $\frac{-18}{24}$, $\frac{-17}{24}$, ..., $\frac{14}{24}$ as the rational numbers between $\frac{-20}{24}$ and $\frac{15}{24}$.

You can take any ten of these.

Another Method

Let us find rational numbers between 1 and 2. One of them is $1.5 \text{ or } 1\frac{1}{2} \text{ or } \frac{3}{2}$. This is the **mean** of 1 and 2. You have studied mean in Class VII.

We find that between any two given numbers, we need not necessarily get an integer but there will always lie a rational number.

We can use the idea of mean also to find rational numbers between any two given rational numbers.

Example 8: Find a rational number between $\frac{1}{4}$ and $\frac{1}{2}$.

Solution: We find the mean of the given rational numbers.

We find the mid point of AB which is C, represented by $\left(\frac{1}{4} + \frac{1}{2}\right) \div 2 = \frac{3}{8}$.

We find that $\frac{1}{4} < \frac{3}{8} < \frac{1}{2}$. If a and b are two rational numbers, then $\frac{a+b}{2}$ is a rational number between a and b such that $a < \frac{a+b}{2} < b$.

This again shows that there are countless number of rational numbers between any two given rational numbers.

Example 9: Find three rational numbers between $\frac{1}{4}$ and $\frac{1}{2}$. **Solution:** We find the mean of the given rational numbers.

As given in the above example, the mean is $\frac{3}{8}$ and $\frac{1}{4} < \frac{3}{8} < \frac{1}{2}$. $\frac{1}{4}$ $\frac{1}{8}$ $\frac{1}{2}$

We now find another rational number between $\frac{1}{4}$ and $\frac{3}{8}$. For this, we again find the mean

This can clearly be shown on the number line as follows:

In the same way we can obtain as many rational numbers as we want between two given rational numbers. You have noticed that there are countless rational numbers between any two given rational numbers.

EXERCISE 1.2

- 1. Represent these numbers on the number line. (i) $\frac{7}{4}$ (ii) $\frac{-5}{6}$
- 2. Represent $\frac{-2}{11}, \frac{-5}{11}, \frac{-9}{11}$ on the number line.
- 3. Write five rational numbers which are smaller than 2.
- 4. Find ten rational numbers between $\frac{-2}{5}$ and $\frac{1}{2}$.
- 5. Find five rational numbers between.

(i)
$$\frac{2}{3}$$
 and $\frac{4}{5}$ (ii) $\frac{-3}{2}$ and $\frac{5}{3}$ (iii) $\frac{1}{4}$ and $\frac{1}{2}$

- 6. Write five rational numbers greater than -2.
- 7. Find ten rational numbers between $\frac{3}{5}$ and $\frac{3}{4}$.

WHAT HAVE WE DISCUSSED?

- 1. Rational numbers are closed under the operations of addition, subtraction and multiplication.
- 2. The operations addition and multiplication are
 - (i) **commutative** for rational numbers.
 - (ii) **associative** for rational numbers.
- 3. The rational number 0 is the additive identity for rational numbers.
- 4. The rational number 1 is the multiplicative identity for rational numbers.
- 5. The additive inverse of the rational number $\frac{a}{b}$ is $-\frac{a}{b}$ and vice-versa.
- 6. The reciprocal or multiplicative inverse of the rational number $\frac{a}{b}$ is $\frac{c}{d}$ if $\frac{a}{b} \times \frac{c}{d} = 1$.
- 7. Distributivity of rational numbers: For all rational numbers *a*, *b* and *c*, a(b + c) = ab + ac and a(b - c) = ab - ac
- 8. Rational numbers can be represented on a number line.
- **9.** Between any two given rational numbers there are countless rational numbers. The idea of **mean** helps us to find rational numbers between two rational numbers.