NBSE Class 10 Maths Previous Year Question Paper 2017

Total number of printed pages: 6

NB-T/M

2017

MATHEMATICS Total marks: 80 Time: 3 hours **General Instructions:** Approximately 15 minutes is allotted to read the question paper and revise i)the answers. *The question paper consists of 22 questions.* ii) All questions are compulsory. iii) Internal choice has been provided in some questions. iv) Marks allocated to every question are indicated against it. N.B: Check that all pages of the question paper is complete as indicated on the top left side. **SECTION - A** Choose the correct answer from the given alternatives. 1. (a) If α and β are the zeros of $3x^2 + 2x - 5$ then the value of $\alpha\beta$ is 1 (i) $\frac{2}{3}$ (ii) $-\frac{2}{3}$ (iii) $\frac{5}{3}$ (b) The pair of equations x = l and y = m represent lines which are 1 (i) parallel (ii) coincident (iii) intersecting at (l, m)(iv) parallel to x-axis (c) The nature of the roots of the equation $4x^2 + 4\sqrt{3}x + 3 = 0$ are 1 (i) real and equal (ii) real and distinct (iii) not real and equal (iv) not real and distinct (d) Which term of the A.P. 72, 63, 54, ... is 0? 1 $(iii) 10^{th}$ (iv) 11th (i) 8th (ii) 9th (e) In the right $\triangle ABC$ right angled at B, the value of $\cos(A+C)$ is 1 (ii) $\frac{1}{2}$ (iii) $\frac{1}{\sqrt{2}}$ (i) 1 (iv) 0 (f) The midpoint of the join of (a+b, 2b-a) and (b-a, 3a) is 1 (ii) (b, a+b) (iii) (a, a+b)(i) (a+b, b)(iv) (a,b)(g) The angle between the tangent and the radius at the point of contact is 1 (i) 0° (ii) 45° (iii) 90° (iv) 180°

-2-

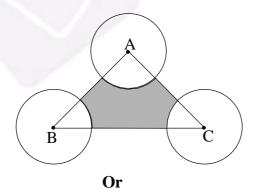
	(h) The sum of the length of arcs of two quadrants of a circle of radius r is							
	$(i)\pi r$	(ii) $2\pi r$	(iii) πr^2	(iv) $\frac{1}{2}\pi r$				
	(i) If the volumes of their radii will be (i) 343 : 27	of two spheres are in (ii) 64:9	n the ratio 343 : 27, (iii) 7 : 3	then the ratio of (iv) 3:7	1			
	(j) In a throw of a die, what is the probability of getting a prime number?							
	(i) $\frac{1}{3}$	(ii) $\frac{1}{2}$	(iii) $\frac{2}{3}$	(iv) 1				
		Section – B						
2.	Use Euclid's Division Algorithm to find the HCF of 405 and 2520.							
3.	For what value of k does the quadratic equation $9x^2 + 8kx + 16 = 0$ have equal roots?							
4.	Find k if the points $(0, k)$, $(1, 2)$ and $(-2, -1)$ are collinear.							
5.	Given that $\triangle ABC \sim \triangle PQR$, if $AB = 14$ cm, area of $\triangle ABC = 196$ cm ² and area of $\triangle PQR = 529$ cm ² , then find PQ.							
6.	If a wheel rotates 5 the wheel in centime	500 times to cover a etres.	distance of 2200 m	, find the radius of	2			
		Section – C						
7.		tic polynomial whose the zeros and the coef		-5 and verify the	3			
	b. If 1 is a zero of the	ne polynomial $7x - x^2$	3 – 6, find its other ze	eros.				
8.		ag quadratic equation $\frac{1}{a} + \frac{1}{b} + \frac{1}{x}$; where		od:	3			
		ng system of equations $y = 10$,	s using the elimination	n method:	•			

-3- *NB-T/M*

9. **a.** Find the 25th term of an A.P. whose 9th term is -6 and common difference is $\frac{5}{4}$

b. The first and the last terms of an A.P. are 8 and 350 respectively. If its common difference is 9, how many terms are there and what is their sum?

10. If 7 sec
$$\theta = 25$$
, evaluate $\frac{1 - \sin^2 \theta}{1 - \cos^2 \theta}$ with the help of a right triangle.


11. **a.** The shadow of a vertical tower on a level ground increases by 10 m when the altitude of the sun changes from 45° to 30°. Find the height of the tower. [Use $\sqrt{3} = 1.73$]

3

3

b. Evaluate
$$\frac{\sec^2 54^\circ - \cot^2 36^\circ}{\cos \sec^2 57^\circ - \tan^2 33^\circ} + 2\sin^2 38^\circ \sec^2 52^\circ - \sin^2 45^\circ$$

- 12. A(x, 7), B(-2, -1) and C(8, -1) be the vertices of $\triangle ABC$. $AD \perp BC$ and D divides BC in the ratio 3:7. If the length of AD is 8 units, find the coordinates of A.
- 13. Draw a $\triangle ABC$ in which AB = 5 cm, BC = 6 cm and AC = 7.5 cm. Construct a $\triangle AB'C'$ similar to $\triangle ABC$ with scale factor 5:7. (Traces of construction only is required.)
- 14. **a.** In the adjoining figure, ABC is an equilateral triangle of side 21 cm. Three circles of equal radii 7 cm are drawn on its three vertices. Find the area of the shaded region. [Use $\sqrt{3} = 1.73$]

b. The surface area of a solid sphere is 9856 cm². The sphere is melted and recast into a cone of height 112 cm. Find the radius of the base of the cone so formed.

NB-T/M

3

3

Class	0-10	10-20	20-30	30-40	40-50	50-60
Frequency	3	6	8	15	10	8

16. Cards marked with 13, 14, 15, ..., 60 are placed in a box and mixed thoroughly. One card is drawn at random from the box. Find the probability that the number on the drawn card is: (i) divisible by 5, (ii) a perfect square.

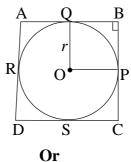
Section - D

17. **a.** John scored 40 marks in a test, getting 3 marks for each correct answer and losing 1 mark for each wrong answer. Had 4 marks been awarded for each correct answer and 2 marks been deducted for each wrong answer, then John would have scored 50 marks. How many questions were there in the test? Solve by forming simultaneous linear equations.

Or 5

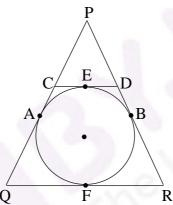

- **b.** A passenger train takes 2 hours less for a journey of 300 km if its speed is increased by 5 km/hr from its usual speed. Find the usual speed of the train. Solve by forming quadratic equations.
- 18. **a.** An aeroplane flying horizontally at a height of 2500 m above the ground is observed at an elevation of 60°. After 15 seconds, the elevation is observed to be 30°. Find the speed of the aeroplane in km/hr. [Use $\sqrt{3} = 1.73$]

Or 5


- **b.** Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30° respectively. Find the height of each pole and the distances of the point from the poles. [Use $\sqrt{3} = 1.73$]
- 19. **a.** State and prove Pythagoras theorem.

Or 5

b. In the adjoining figure, find x, y and z.



20. **a.** In the figure given below, a circle is inscribed in a quadrilateral ABCD in which $\angle B = 90^{\circ}$. If AD = 23 cm, AB = 29 cm and DS = 5 cm, find the radius of the circle.

5

b. In the figure given below, a circle is inscribed in ΔPQR touching the sides PQ, QR and PR at A, F and B respectively. CD is a tangent to the circle at E and bisects the sides PQ and PR at C and D respectively. Prove that perimeter of the quadrilateral CQRD is three times of the base QR of the triangle.

21. **a.** A chord of length $35\sqrt{2}$ cm is drawn in a circle of diameter 70 cm. Find the area of the minor and major segments of the circle.

Or 5

- **b.** An oil funnel consists of a 7 cm long cylindrical portion attached to a frustrum of a cone. If the perimeters of the top and bottom of the funnel are 20π cm & 8π cm and the total height is 15 cm, find the total outer surface area of the funnel.
- 22. **a.** Construct a 'less than ogive' for the following frequency distribution:

Capital (in `lakhs)	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
No. of								
companies	2	3	7	11	15	7	2	3

-6- *NB-T/M*

Or 5

b. The mean of the following frequency distribution is 62.8 and the sum of all frequencies is 50. Find the missing frequencies f_1 and f_2 using step-deviation method, taking assumed mean = 50.

Class	0-20	20-40	40-60	60-80	80-100	100-120
Frequency	5	f_1	10	f ₂	7	8
