NBSE Class 10 Maths Previous Year Question Papers 2016

Total number of printed pages : 6

NB-T/M

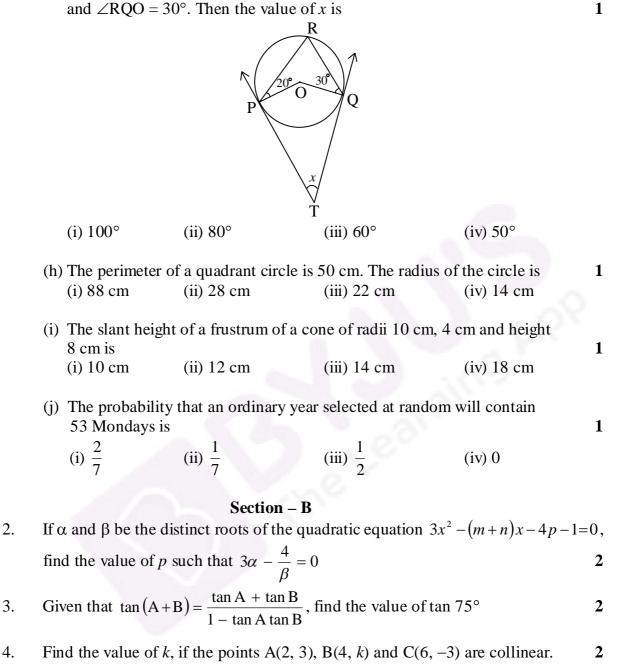
2016

MATHEMATICS

Time : 3 hours

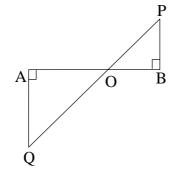
Total marks: 80

1


General Instructions:

- Approximately 15 minutes is allotted to read the question paper and revise the i) answers.
- The question paper consists of 22 questions. ii)
- All questions are compulsory. iii)
- Internal choice has been provided in some questions. iv)
- Marks allocated to every question are indicated against it. v)
- N.B: Check that all pages of the question paper is complete as indicated on the top left side.

SECTION - A


1.	Choose the correct answer from the given alternatives.					
		eros 2 and -3 can be writ (ii) $x^2 - 3x - 6$ (iv) $x^2 - x + 6$	tten as	1		
	(b) In the linear equation $ax+by=c$ this equation is (i) the y-axis	c, if $a \neq 0$, $b = 0$ and $c = 0$ (ii) the <i>x</i> -axis	, then the graph of	1		
	(iii) a line parallel to <i>x</i>-axis(c) The discriminant of the quadrat			1		
	(i)113 (ii) 49	(iii) 0 x	(iv) -113			
	(d) The n^{th} term of the A.P. 6, 10, 1 (i) $2 - 4n$ (ii) $2 + 4n$	14, 18, is (iii) 4 <i>n</i> − 2	(iv) 4 <i>n</i> + 2	1		
	(e) In the right $\triangle ABC$ right angled (i) $\frac{AB}{AC}$ (ii) $\frac{BC}{AC}$	at B, cosec A is equal to (iii) $\frac{AC}{BC}$	(iv) $\frac{AC}{AB}$	1		
	(f) The difference between the absolution plane are $2a$ and $2b$ respectively (i) $\sqrt{a^2 + b^2}$ (ii) $2\sqrt{a^2 + b^2}$	y. The distance between	these two points is	1		

(g) TP and TQ are tangents to the adjoining circle with centre O. $\angle RPO = 20^{\circ}$ and $\angle RQO = 30^{\circ}$. Then the value of x is

2

5. In the figure given below, QA and PB are perpendicular to AB. If AO = 10 cm, BO = 6 cm and PB = 9 cm, then find the value of AQ.

6. The circumference of a circle is 220 cm. Find the area of the sector of that circle whose central angle is 36° 2

Section – C

Or

- 7. **a.** If α , β are the zeros of the quadratic polynomial $x^2 9$, form the quadratic polynomial whose zeros are $\frac{3\alpha}{\beta}$ and $\frac{3\beta}{\alpha}$
 - **b.** Determine whether the quadratic equation $\frac{3}{4}x^2 8x + 3 = 0$ has real roots and if so, find the roots by using quadratic formula.
- 8. Solve the following system of linear equation by cross-multiplication method:

$$\frac{5}{x-1} + \frac{1}{y-2} = 2$$

$$\frac{6}{x-1} - \frac{3}{y-2} = 1$$
3

- The last term of an A.P. is 120. It's first term and common difference are 20 and 5 respectively. Find the sum of the A.P.
 3
- 10. If $\tan \theta = \frac{2mn}{m^2 n^2}$, find the values of $\sin \theta$ and $\sec \theta$ with respect to the sides of a right-angled triangle. **3**

3

NB-T/M

3

3

3

3

11. **a.** Prove that
$$(1 + \cot^2 \theta) + (1 + \frac{1}{\cot^2 \theta}) = \frac{1}{\sin^2 \theta - \sin^4 \theta}$$

Or

b. Prove that
$$\cos(40^\circ - \theta) - \sin(50^\circ + \theta) + \frac{\cos^2 40^\circ + \cos^2 50^\circ}{\sin^2 40^\circ + \sin^2 50^\circ} = 1$$

-4-

- 12. **a.** A boy is standing on the deck of an anchored ship which is 15 m above the sea level. He observes that the angle of elevation of the top of a hill as 60° and the angle of depression of the base of the hill as 30°. Calculate the distance of the base of the hill from the ship and also the height of the hill. [Use $\sqrt{3} = 1.732$] Or 3
 - **b.** A pole 5 m high is fixed on the top of a tower. From a point A on the ground, the angle of elevation of the top of the pole is 60° and from the top of the tower, the angle of depression of the point A is 45°. Find the height of the tower. [Use $\sqrt{3} = 1.732$]
- 13. Draw a line AB of length 9 cm. Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm. Construct tangents to each circle from the centre of the other circle. (Traces of construction only is required.)
- 14. **a.** Two circles touch internally. The sum of their areas is 116π cm² and the distance between their centres is 6 cm. Find the radii of the circles.

Or

b. A horse is tethered at one corner of a squared-shaped grass field of side 21 m by means of a 7 m long rope. Find:

(i) the area it can graze,

- (ii) the ungrazed area if the rope were 14 m long.
- 15. Find the median of the weights of 30 students of a class.

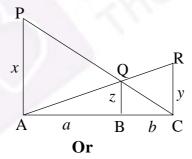
Weight (in kg)	40-45	45-50	50-55	55-60	60-65	65-70	70-75
No. of students	2	3	8	6	6	3	2

16. **a.** A box contains 8 dozen oranges out of which 8 are rotten. An orange is selected at random. Find the probability of getting:

(i) a good orange,

(ii) a rotten orange

- **b.** Two dice are rolled simultaneously. Find the probability of getting: (i) a sum greater than 7,
 - (ii) same number on both dice.


Section – D

17. **a.** Draw the graphs of the equations x - y + 1 = 0 and 3x + 2y - 12 = 0. Determine the coordinates of the vertices of the triangle formed by these lines and the *x*-axis.

Or

- **b.** The area of a rectangle gets reduced by 9 square units if its length is reduced by 5 units and the breadth is increased by 3 units. If we increase the length by 3 units and the breadth by 2 units, the area is increased by 67 square units. Find the length and breadth of the rectangle.
- 18. a. The points A(0, -1), B(-2, 3), C(6, 7) and D(8, 3) are the vertices of a quadrilateral. Identify the name of the quadrilateral ABCD with reasons.
 Or
 - **b.** The line segment joining the points P(3, 3) and Q(6, -6) is trisected at the points A and B such that A is nearer to P. If A also lies on the line given by 2x + y + k = 0, find the value of k.
- 19. **a.** In the adjoining figure, PA, QB and RC each is perpendicular to AC such that

PA = x, RC = y, QB = z, AB = a and BC = b. Prove that: $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$

5

- **b.** State and prove Thales theorem.
- 20. a. Angle between two tangents PQ and PR from a point P to a circle with centre O is right angle. If PQ + PR = 8 cm, find the diameter of the circle.
 Or 5
 - **b.** Prove that the opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

5

5

- 21. **a.** A solid is composed of a cylinder with hemispherical ends. The total height of the solid is 19 cm and the diameter of the cylinder is 7 cm. Find the volume and the surface area of the solid.
 - **b.** A semi-circular metal sheet of diameter 28 cm is bent into an open conical cup. Find the capacity of the cup. [Use $\sqrt{147} = 12.12$]
- 22. **a.** Find the mean of the following data using Step-deviation method:

Or

U	
Marks obtained	No. of students
Less than 30	6
Less than 40	24
Less than 50	49
Less than 60	71
Less than 70	88
Less than 80	100

[Take assumed mean = 45]

b. The total sales contributed by different counters in a departmental store during a month was:

Counter	Sale (`)
Electrical	3,50,000
Hardware	2,50,000
Men's wear	2,00,000
Ladies wear	3,00,000
Toys	1,00,000

Represent this information in a pie-chart by rounding-off the values (not on graph paper). Also shade and label the different sectors.

5

5