EXERCISE 10.1

Choose the correct answer from the given four options:

1. To divide a line segment $A B$ in the ratio 5:7, first a ray $A X$ is drawn so that $B A X$ is an acute angle and then at equal distances points are marked on the ray $A X$ such that the minimum number of these points is
(A) 8
(B) 10
(C) 11
(D) 12

Solution:
(D) 12

According to the question,
A line segment $A B$ in the ratio 5:7
So, $\mathrm{A}: \mathrm{B}=5: 7$
Now,
Draw a ray AX making an acute angle $\angle \mathrm{BAX}$,
Mark A+B points at equal distance.
So, we have $A=5$ and $B=7$
Hence, minimum number of these points $=\mathrm{A}+\mathrm{B}=5+7=12$
2. To divide a line segment $A B$ in the ratio 4:7, a ray $A X$ is drawn first such that $B A X$ is an acute angle and then points $A_{1}, A_{2}, A_{3}, \ldots$. are located at equal distances on the ray $A X$ and the point B is joined to
(A) \mathbf{A}_{12}
(B) A_{11}
(C) A_{10}
(D) A_{9}

Solution:
(B) A_{11}

According to the question,
A line segment AB in the ratio 4:7
So, $A: B=4: 7$
Now,
Draw a ray AX making an acute angle BAX
Minimum number of points located at equal distances on the ray,
$A X=A+B=4+7=11$
$\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots \ldots . . .$. are located at equal distances on the ray AX.
Point B is joined to the last point is A_{11}.
3. To divide a line segment $A B$ in the ratio $5: 6$, draw a ray $A X$ such that $\angle B A X$ is an acute angle, then draw a ray $B Y$ parallel to $A X$ and the points $A_{1}, A_{2}, A_{3}, \ldots$ and $B_{1}, B_{2}, B_{3}, \ldots$ are located at equal distances on ray $A X$ and $B Y$, respectively. Then the points joined are
(A) A_{5} and B_{6}
(B) A_{6} and B_{5}
(C) A_{4} and B_{5}
(D) A_{5} and B_{4}

Solution:
(A) A5 and B_{6}

According to the question,
A line segment $A B$ in the ratio 5:7
So, $\mathrm{A}: \mathrm{B}=5: 7$
Steps of construction:

1. Draw a ray AX, an acute angle BAX.
2. Draw a ray $B Y \| A X$, angle $A B Y=$ angle $B A X$.
3. Now, locate the points $A_{1}, A_{2}, A_{3}, A_{4}$ and A_{5} on $A X$ and $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}$ and B_{6} (Because A:B = 5:7)
4. Join $\mathrm{A}_{5} \mathrm{~B}_{6}$.
$\mathrm{A}_{5} \mathrm{~B}_{6}$ intersect AB at a point C .
$\mathrm{AC}: \mathrm{BC}=5: 6$

EXERCISE 10.2

PAGE NO: 115
Write True or False and give reasons for your answer in each of the following:

1. By geometrical construction, it is possible to divide a line segment in the ratio $\sqrt{ } 3$:(1/ $\sqrt{ } 3)$ Solution:

True
Justification:
According to the question,
Ratio $=\sqrt{ } 3:(1 / \sqrt{ } 3)$
On simplifying we get,
$\sqrt{3} /(1 / \sqrt{ } 3)=(\sqrt{3} \times \sqrt{3}) / 1=3: 1$
Required ratio $=3: 1$
Hence,
Geometrical construction is possible to divide a line segment in the ratio 3:1.
2. To construct a triangle similar to a given $\triangle \mathrm{ABC}$ with its sides $7 / 3$ of the corresponding sides of $\triangle A B C$, draw a ray $B X$ making acute angle with $B C$ and X lies on the opposite side of A with respect to $B C$. The points $B 1, B 2, \ldots ., B 7$ are located at equal distances on $B X, B 3$ is joined to C and then a line segment $B 6 C^{\prime}$ is drawn parallel to $B 3 C$ where C^{\prime} lies on $B C$ produced. Finally, line segment $\mathrm{A}^{\prime} \mathrm{C}^{\prime}$ is drawn parallel to AC .

Solution:

False
Justification:
Let us try to construct the figure as given in the question.
Steps of construction,

1. Draw a line segment BC.
2. With B and C as centres, draw two arcs of suitable radius intersecting each other at A.
3. Join BA and CA and we get the required triangle $\triangle \mathrm{ABC}$.
4. Draw a ray $B X$ from B downwards to make an acute angle $\angle C B X$.
5. Now, mark seven points $B_{1}, B_{2}, B_{3} \ldots B_{7}$ on $B X$, such that $B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}=$ $\mathrm{B}_{4} \mathrm{~B}_{5}=\mathrm{B}_{5} \mathrm{~B}_{6}=\mathrm{B}_{6} \mathrm{~B}_{7}$.
6. Join $B_{3} C$ and draw a line $B_{7} C^{\prime} \| B_{3} C$ from B_{7} such that it intersects the extended line segment BC at C^{\prime}.
7. Draw $\mathrm{C}^{\prime} \mathrm{A}^{\prime} \| \mathrm{CA}$ in such a way that it intersects the extended line segment BA at A^{\prime}.

Then, $\triangle A^{\prime} \mathrm{BC}^{\prime}$ is the required triangle whose sides are $7 / 3$ of the corresponding sides of $\triangle \mathrm{ABC}$.
According to the question,
We have,
Segment $\mathrm{B}_{6} \mathrm{C}^{\prime} \| \mathrm{B}_{3} \mathrm{C}$. But it is clear in our construction that it is never possible that segment $\mathrm{B}_{6} \mathrm{C}^{\prime} \| \mathrm{B}_{3} \mathrm{C}$ since the similar triangle $\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ has its sides $7 / 3$ of the corresponding sides of triangle ABC .
So, $\mathrm{B}_{7} \mathrm{C}^{\prime}$ is parallel to $\mathrm{B}_{3} \mathrm{C}$.

EXERCISE 10.3

1. Draw a line segment of length 7 cm . Find a point P on it which divides it in the ratio 3:5. Solution:

Steps of construction:

1. Draw a line segment, $\mathrm{AB}=7 \mathrm{~cm}$.
2. Draw a ray, $A X$, making an acute angle down ward with $A B$.
3. Mark the points $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3} \ldots \mathrm{~A}_{8}$ on AX .
4. Mark the points such that $\mathrm{AA}_{1}=\mathrm{A}_{1} \mathrm{~A}_{2}=\mathrm{A}_{2} \mathrm{~A}_{3}=\ldots . ., \mathrm{A}_{7} \mathrm{~A}_{8}$.
5. Join BA_{8}.
6. Draw a line parallel to BA_{8} through the point A_{3}, to meet AB on P .

$$
\text { Hence AP: } \mathrm{PB}=3: 5
$$

2. Draw a right triangle ABC in which $\mathrm{BC}=\mathbf{1 2} \mathrm{cm}, \mathrm{AB}=5 \mathrm{~cm}$ and $\angle \mathrm{B}=90^{\circ}$. Construct a triangle similar to it and of scale factor $2 / 3$. Is the new triangle also a right triangle?

Solution:

Steps of construction:

1. Draw a line segment $\mathrm{AB}=5 \mathrm{~cm}$. Construct a right angle SAB at point A .
2. Draw an arc of radius 12 cm with B as its centre to intersect $S A$ at C.
3. Join BC to obtain ABC.
4. Draw a ray $A X$ making an acute angle with $A B$, opposite to vertex C.
5. Locate 3 points, A_{1}, A_{2}, A_{3} on line segment $A X$ such that $A_{1}=A_{1} A_{2}=A_{2} A_{3}$.
6. Join $\mathrm{A}_{3} \mathrm{~B}$.
7. Draw a line through A_{2} parallel to $\mathrm{A}_{3} \mathrm{~B}$ intersecting AB at B^{\prime}.
8. Through B^{\prime}, draw a line parallel to BC intersecting AC at C^{\prime}.
9. Triangle $A B^{\prime} C^{\prime}$ is the required triangle.

EXERCISE 10.4

1. Two line segments $A B$ and $A C$ include an angle of 60° where $A B=5 \mathrm{~cm}$ and $A C=7 \mathrm{~cm}$. Locate points P and Q on $A B$ and $A C$, respectively such that $A P=3 / 4 A B$ and $A Q=1 / 4 A C$. Join P and Q and measure the length $P Q$.

Solution:

Steps of construction:

1. Draw a line segment $A B=5 \mathrm{~cm}$.

2. Draw $\angle \mathrm{BAZ}=60^{\circ}$.
3. With centre A and radius 7 cm , draw an arc cutting the line AZ at C .
4. Draw a ray AX, making an acute $\angle B A X$.
5. Divide $A X$ into four equal parts, namely $A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}$.
6. Join $A_{4} B$.
7. Draw $\mathrm{A}_{3} \mathrm{P} \| \mathrm{A}_{4} \mathrm{~B}$ meeting AB at P .
8. Hence, we obtain, P is the point on AB such that $\mathrm{AP}=3 / 4 \mathrm{AB}$.
9. Next, draw a ray AY, such that it makes an acute $\angle \mathrm{CAY}$.
10. Divide $A Y$ into four parts, namely $A B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}$.
11. Join $B_{4} C$.
12. Draw $B_{1} Q \| B_{4} C$ meeting $A C$ at Q. We get, Q is the point on $A C$ such that $A Q=1 / 4 A C$.
13. Join $P Q$ and measure it.
14. $P Q=3.25 \mathrm{~cm}$.
15. Draw a parallelogram $A B C D$ in which $B C=5 \mathrm{~cm}, \mathrm{AB}=\mathbf{3 \mathrm { cm }}$ and angle $\mathrm{ABC}=60^{\circ}$, divide it into triangles $B C D$ and $A B D$ by the diagonal $B D$. Construct the triangle $B D^{\prime} C^{\prime}$ similar to triangle BDC with scale factor 4/3. Draw the line segment $D^{\prime} A^{\prime}$ parallel to $D A$ where A^{\prime} lies on extended side $\mathbf{B A}$. Is $A^{\prime} \mathbf{B C}^{\prime} \mathrm{D}^{\prime}$ a parallelogram?

Solution:

Steps of constructions:

1. Draw a line $\mathrm{AB}=3 \mathrm{~cm}$.
2. Draw a ray $B Y$ making an acute $\angle A B Y=60^{\circ}$.
3. With centre B and radius 5 cm , draw an arc cutting the point C on BY .
4. Draw a ray AZ making an acute $\angle \mathrm{ZAX}^{\prime}=60^{\circ}$. $\left(\mathrm{BY} \| \mathrm{AZ}, \therefore \angle \mathrm{YBX}{ }^{\prime}=\mathrm{ZAX}^{\prime}=60^{\circ}\right)$
5. With centre A and radius 5 cm , draw an arc cutting the point D on AZ .
6. Join CD
7. Thus we obtain a parallelogram ABCD.
8. Join BD , the diagonal of parallelogram ABCD .
9. Draw a ray BX downwards making an acute $\angle \mathrm{CBX}$.
10. Locate 4 points $B_{1}, B_{2}, B_{3}, B_{4}$ on $B X$, such that $B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}$.
11. Join $B_{4} C$ and from $B_{3} C$ draw a line $B 4 C^{\prime} \| B 3 C$ intersecting the extended line segment $B C$ at C'.
12. Draw $C^{\prime} D^{\prime} \| C D$ intersecting the extended line segment $B D$ at D^{\prime}. Then, $\triangle D^{\prime} \mathrm{BC}^{\prime}$ is the required triangle whose sides are $4 / 3$ of the corresponding sides of $\triangle D B C$.
13. Now draw a line segment D'A'|| DA, where A' lies on the extended side BA.
14. Finally, we observe that $\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D}^{\prime}$ is a parallelogram in which $\mathrm{A}^{\prime} \mathrm{D}^{\prime}=6.5 \mathrm{~cm} \mathrm{~A}^{\prime} \mathrm{B}=4 \mathrm{~cm}$ and $\angle A^{\prime} B^{\prime}=60^{\circ}$ divide it into triangles $\mathrm{BC}^{\prime} \mathrm{D}^{\prime}$ and $\mathrm{A}^{\prime} \mathrm{BD}^{\prime}$ by the diagonal BD^{\prime}.

15. Draw two concentric circles of radii 3 cm and 5 cm . Taking a point on outer circle construct the pair of tangents to the other. Measure the length of a tangent and verify it by actual calculation. Solution:

Steps of constructions:

1. Draw a circle with center O and radius 3 cm .
2. Draw another circle with center O and radius 5 cm .
3. Take a point P on the circumference of larger circle and join OP.
4. Draw another circle with diameter OP such that it intersects the smallest circle at A and B.
5. Join A to P and B to P.

Hence AP and BP are the required tangents.

