EXERCISE 13.1

Choose the correct answer from the given four options:
1 . In the formula

$$
\bar{x}=a+\frac{f_{i} d_{i}}{f_{i}}
$$

For finding the mean of grouped data $d i$'s are deviations from a of
(A) Lower limits of the classes
(B) Upper limits of the classes
(C) Mid points of the classes
(D) Frequencies of the class marks

Solution:
(C) Mid points of the classes

Explanation:
We know,
$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{a}$
Where,

$$
x_{i} \text { are data and ' } a \text { ' is the assumed mean }
$$

So, d_{i} are the deviations from of mid - points of the classes.
Hence, the option (C) is correct
2. While computing mean of grouped data, we assume that the frequencies are
(A) Evenly distributed over all the classes
(B) Centred at the class marks of the classes
(C) Centred at the upper limits of the classes
(D) Centred at the lower limits of the classes

Solution:
(B) Centered at the class marks of the classes

Explanation:

In computing the mean of grouped data, the frequencies are centered at the class marks of the classes.
Hence, the option (B) is correct
3. If $x i$'s are the mid points of the class intervals of grouped data, $f i$'s are the corresponding frequencies and x is the mean, then $\left(f_{i} x_{i}-\bar{x}\right)_{\text {is equal to }}$
(A) 0
(B) $\mathbf{- 1}$
(C) 1
(D) 2

Solution:
(A) 0

Explanation:

$$
\begin{align*}
& \text { Mean }(\mathrm{x})=\text { Sum of all the observations/ Number of observations } \\
& \mathrm{x}=\left(\mathrm{f}_{1} \mathrm{x}_{1}+\mathrm{f}_{2} \mathrm{x}_{2}+\ldots \ldots+\mathrm{f}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}\right) / \mathrm{f}_{1}+\mathrm{f}_{2}+\ldots \ldots+\mathrm{f}_{\mathrm{n}} \\
& \mathrm{x}=\Sigma \mathrm{fixi} / \Sigma \mathrm{fi}, \Sigma \mathrm{fi}=\mathrm{n} \\
& \mathrm{x}=\Sigma \text { fixi } / \mathrm{n} \\
& \mathrm{n} \mathrm{x}=\Sigma \text { fixi } \ldots \ldots \ldots \ldots . .(1) \tag{1}
\end{align*}
$$

$\Sigma(f i x i-x)=\left(f_{1} x_{1}-x\right)+\left(f_{2} x_{2}-x\right)+\ldots .+(f n x n-x)$
$\Sigma(f i x i-x)=\left(f_{1} x_{1}+f_{2} x_{2}+\ldots .+\mathrm{fnxn}\right)-(x+x+\ldots . n$ times $)$
$\Sigma($ fixi -x$)=\Sigma$ fixi -nx
$\Sigma($ fixi -x$)=\mathrm{nx}-\mathrm{nx}($ From eq1)
$\Sigma($ fixi -x$)=0$
Hence, option (A) is correct
4. In the formula $x=a+h\left(f_{i} u_{i} / f_{i}\right)$, for finding the mean of grouped frequency distribution, $u_{i}=$
(A) $\left(x_{i}+a\right) / h$
(B) $h(x i-a)$
(C) $\left(x_{i}-a\right) / h$
(D) $\left(a-x_{i}\right) / h$

Solution:

(C) $\left(x_{i}-a\right) / h$

Explanation:
According to the question,
$x=a+h\left(f_{i} u_{i} / f_{i}\right)$,
Above formula is a step deviation formula.
In the above formula,
x_{i} is data values,
a is assumed mean,
h is class size,
When class size is same we simplify the calculations of the mean by computing the coded mean
of $u_{1}, u_{2}, u_{3} \ldots$. ,
Where $u_{i}=\left(x_{i}-a\right) / h$
Hence, option (C) is correct
5. The abscissa of the point of intersection of the less than type and of the more than type cumulative frequency curves of a grouped data gives its
(A) mean
(B) median
(C) mode
(D) all the three above

Solution:

(B) Median

Explanation:
Since, the intersection point of less than ogive and more than ogive gives the median on the abscissa, the abscissa of the point of intersection of the less than type and of the more than type cumulative frequency curves of a grouped data gives its
Hence, option (B) is correct
6. For the following distribution :

Class	$0-05$	$5-10$	$10-15$	$15-20$	$20-25$
Frequency	10	15	12	20	9

the sum of lower limits of the median class and modal class is
(A)

Solution:
(B) 25

Explanation:

Class	Frequency	Cumulative Frequency
$0-5$	10	10
$5-10$	15	25
$10-15$	12	37
$15-20$	20	57
$20-25$	9	66

From the table, N/2 = 66/2 = 33, which lies in the interval 10-15.
Hence, lower limit of the median class is 10 .
The highest frequency is 20 , which lies in between the interval 15-20.
Hence, lower limit of modal class is 15 .
Therefore, required sum is $10+15=25$.
Hence, option (B) is correct

7. Consider the following frequency distribution:

Class	$0-05$	$\mathbf{6 - 1 1}$	$\mathbf{1 2 - 1 7}$	$\mathbf{1 8 - 2 3}$	$\mathbf{2 4 - 2 9}$
Frequency	13	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{8}$	11

The upper limit of the median class is
(A) $\mathbf{1 7}$ (B) 17.5 (C) 18 (D) 18.5

Solution:

(B) 17.5

Explanation:
According to the question,
Classes are not continuous, hence, we make the data continuous by subtracting 0.5 from lower limit and adding 0.5 to upper limit of each class.

Class	Frequency	Cumulative Frequency
$0.5-5.5$	13	13
$6.5-11.5$	10	23
$11.5-17.5$	15	38
$17.5-23.5$	8	46
$23.5-29.5$	11	57

According to the question, $\mathrm{N} / 2=57 / 2=28.5$
28.5 lies in between the interval 11.5-17.5.

Therefore, the upper limit is 17.5 .
Hence, option (B) is correct
8. For the following distribution:

Marks
Below 10
Below 20
Number of students
3

Below 30
12
Below 40 27

Below 50 57

Below 60 75 80

The modal class is
(A) 10-20 (B) 20-30
(C) 30-40
(D) 50-60

Solution:

(C) 30-40

Explanation:

Marks	Number of students	Cumulative Frequency
Below 10	$3=3$	3
$10-20$	$(12-3)=9$	12
$20-30$	$(27-12)=15$	27
$30-40$	$(57-27)=30$	57
$40-50$	$(75-57)=18$	75
$50-60$	$(80-75)=5$	80

Here, we see that the highest frequency is 30 , which lies in the interval 30-40.
Hence, option (C) is correct

9. Consider the data :

Class	$65-85$	$85-105$	$105-125$	$\mathbf{1 2 5 - 1 4 5}$	$\mathbf{1 4 5 - 1 6 5}$	$\mathbf{1 6 5 - 1 8 5}$	$\mathbf{1 8 5 - 2 0 5}$
Frequency	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{1 3}$	$\mathbf{2 0}$	$\mathbf{1 4}$	$\mathbf{7}$	$\mathbf{4}$

The difference of the upper limit of the median class and the lower limit of the modal class is
(A) 0
(B) 19
(C) 20 (D)
(D) 38

Solution:
(C) 20

Explanation:

Class	Frequency	Cumulative Frequency
$65-85$	4	4
$85-105$	5	9
$105-125$	13	22
$125-145$	20	42
$145-165$	14	56
$165-185$	7	63
$185-205$	4	67

Here, $\mathrm{N} / 2=67 / 2=33.5$ which lies in the interval $125-145$.
Hence, upper limit of median class is 145 .
Here, we see that the highest frequency is 20 which lies in 125-145.
Hence, the lower limit of modal class is 125.
\therefore Required difference $=$ Upper limit of median class - Lower limit of modal class $=145-125=20$
Hence, option (C) is correct
10. The times, in seconds, taken by 150 athletes to run a 110 m hurdle race are tabulated below

Class	$\mathbf{1 3 . 8 - 1 4}$	$\mathbf{1 4 - 1 4 . 2}$	$\mathbf{1 4 . 2 - 1 4 . 4}$	$\mathbf{1 4 . 4 - 1 4 . 6}$	$\mathbf{1 4 . 6 - 1 4 . 8}$	$\mathbf{1 4 . 8}-15$
Frequency	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{7 1}$	$\mathbf{4 8}$	$\mathbf{2 0}$

The number of athletes who completed the race in less than 14.6 seconds is :
(A) 11 (B) 71
(C) 82
(D) 130

Solution:

(C) 82

Explanation:
The number of athletes who completed the race in less than 14.6 second $=2+4+5+71=82$
Hence, option (C) is correct
11. Consider the following distribution :

Marks obtained
More than or equal to 0
More than or equal to 10
More than or equal to 20
More than or equal to 30
More than or equal to 40
More than or equal to 50

Number of students

63
58
55
51 48
42

The frequency of the class $\mathbf{3 0 - 4 0}$ is
(A) 3 (B) 4 (C) 48 (D) 51

Solution:
(A) 3

Explanation:

Marks Obtained	Number of students	Cumulative Frequency
$0-10$	$(63-58)=5$	5
$10-20$	$(58-55)=3$	3
$20-30$	$(55-51)=4$	4
$30-40$	$(51-48)=3$	3
$40-50$	$(48-42)=6$	6
$50<$	$42=42$	42

Hence, frequency in the class interval 30-40 is 3 .
Hence, option (A) is correct
12. If an event cannot occur, then its probability is
(A) 1 (B) $3 / 4(C) 1 / 2(D) 0$

Solution:
(D) 0

Explanation:

The event which cannot occur is said to be impossible event.
The probability of impossible event = zero.
Hence, option (D) is correct
13. Which of the following cannot be the probability of an event?
(A) 1/3
(B) 0.1
(C) 3%
(D) 17/16

Solution:
(D) 17/16

Explanation:
Probability of an event always lies between 0 and 1 .
Probability of any event cannot be more than 1 or negative as $(17 / 16)>1$
Hence, option (D) is correct

EXERCISE 13.2

1. The median of an ungrouped data and the median calculated when the same data is grouped are always the same. Do you think that this is a correct statement? Give reason.

Solution:

In order to calculate the median of a grouped data, the formula used is based on the assumption that the observations in the classes are uniformly distributed or equally spaced. Hence, we cannot say that the statement "the median of an ungrouped data and the median calculated when the same data is grouped are always the same" is always correct.
2. In calculating the mean of grouped data, grouped in classes of equal width, we may use the formula

$$
\bar{x}=a+\frac{f_{i} d_{i}}{f_{i}}
$$

where a is the assumed mean. a must be one of the mid-points of the classes. Is the last statement correct? Justify your answer.

Solution:

No, the statement is not correct. It is not necessary that assumed mean should be the mid - point of the class interval. a can be considered as any value which is easy to simplify it.
3. Is it true to say that the mean, mode and median of grouped data will always be different? Justify your answer.

Solution:

No, the values of mean, mode and median of grouped data can be the same as well, it depends on the type of data given.
4. Will the median class and modal class of grouped data always be different? Justify your answer. Solution:

The median class and modal class of grouped data is not always different, it depends on the data given.
5. In a family having three children, there may be no girl, one girl, two girls or three girls. So, the probability of each is $1 / 4$. Is this correct? Justify your answer.

Solution:

No it is not correct that in a family having three children, there may be no girl, one girl, two girls or three girls, the probability of each is $1 / 4$. .
Let boys be B and girls be G
Outcomes can be BBB, GGG, BBG, BGB, GBB, GGB, GBG, BGG
Then Probability of 3 girls $=1 / 8$
Probability of 0 girls $=1 / 8$
Probability of 2 girls $=3 / 8$
Probability of 1 girl $=3 / 8$
6. A game consists of spinning an arrow which comes to rest pointing at one of the regions $(1,2 \mathrm{or}$
3) (Fig. 13.1). Are the outcomes 1, 2 and 3 equally likely to occur? Give reasons.

Solution:

Fig. 13.1
Total no. of outcome $=360$
$p(1)=90 / 360=1 / 4$
$p(2)=90 / 360=1 / 4$
$p(3)=180 / 360=1 / 2$
Hence, it is clear that the outcome are not equal
7. Apoorv throws two dice once and computes the product of the numbers appearing on the dice. Peehu throws one die and squares the number that appears on it. Who has the better chance of getting the number 36 ? Why?

Solution:

Apoorv throw two dice at once.
Hence, the total number of outcomes $=36$
Number of outcomes for getting product $36=1(6 \times 6)$
\therefore Probability for Apoorv $=1 / 36$
Peehu throws one die,
Hence, the total number of outcomes $=6$
Number of outcomes for getting square $=36$
\therefore Probability for Peehu $=6 / 36=1 / 6$
Therefore, Peehu has a better chance of getting the number 36 .

EXERCISE 13.3

1. Find the mean of the distribution :

Class	$\mathbf{1 - 3}$	$\mathbf{3 - 5}$	$5-7$	$\mathbf{7 - 1 0}$
Frequency	9	22	27	17

Solution:

We first, find the class mark x_{i} of each class and then proceed as follows.

Class	Class Marks (xi)	Frequency $\left(\mathbf{f i}_{\mathbf{i}}\right)$	$\mathbf{f i x i}_{\mathbf{i}}$
$1-3$	2	9	18
$3-5$	4	22	88
$5-7$	6	27	162
$7-10$	8.5	17	144.5
		$\Sigma \mathrm{f}_{\mathrm{i}}=75$	$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=412.5$

Mean,

$$
(\overline{\mathrm{x}})=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{412.5}{75}=5.5
$$

Therefore, mean of the given distribution $=5.5$.
2. Calculate the mean of the scores of 20 students in a mathematics test :

Marks	$\mathbf{1 0 - 2 0}$	$20-30$	$\mathbf{3 0 - 4 0}$	$\mathbf{4 0 - 5 0}$	$\mathbf{5 0 - 6 0}$
Number of students	2	4	7	6	1

Solution:

We first, find the class mark x_{i} of each class and then proceed as follows

Class	Class Marks ($\mathbf{x i}_{\mathbf{i}}$)	Frequency $\left(\mathbf{f}_{\mathbf{i}}\right)$	$\mathbf{f i x}_{\mathbf{i}}$
$10-20$	15	2	30
$20-30$	25	4	100
$30-40$	35	7	245
$40-50$	45	6	270
$50-60$	55	1	55
		$\Sigma \mathrm{f}_{\mathrm{i}}=20$	$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=700$

Mean,

$$
\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{700}{20}=35
$$

Therefore, mean of scores of 20 students in mathematics test $=35$.
3. Calculate the mean of the following data :

Class	$4-7$	$8-11$	$12-15$	$16-19$
Frequency	5	4	9	10

Solution:

The given data is not continuous.
So, we subtract 0.5 from the lower limit and add 0.5 in the upper limit of each class.

Class	Class Marks $\left(\mathbf{x}_{\mathbf{i}}\right)$	Frequency $\left(\mathbf{f}_{\mathbf{i}}\right)$	$\mathbf{f}_{\mathbf{i} \mathbf{x}_{\mathbf{i}}}$
$3.5-7.5$	5.5	5	27.5
$7.5-11.5$	9.5	4	38
$11.5-15.5$	13.5	9	121.5
$15.5-19.5$	17.5	10	175
		$\Sigma \mathrm{f}_{\mathrm{i}}=28$	$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=362$

Mean,

$$
\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{f}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{362}{28}=12.93
$$

Therefore, mean of the given data $=12.93$.
4. The following table gives the number of pages written by Sarika for completing her own book for 30 days :

Find the mean number of pages written per day.

Solution:

Class Marks	Mid - Value $\left(\mathbf{x i}_{\mathbf{i}}\right)$	Number of days $\left(\mathbf{f}_{\mathbf{i}}\right)$	$\mathbf{f i x}_{\mathbf{i}}$
$15.5-18.5$	17	1	17
$18.5-21.5$	20	3	60
$21.5-24.5$	23	4	92
$24.5-27.5$	26	9	234
$27.5-30.5$	29	13	377
		$\Sigma \mathrm{f}_{\mathrm{i}}=30$	$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=780$

The given data is not continuous.
Hence, we subtract 0.5 from the lower limit and add 0.5 in the upper limit of each class.
Mean $(\mathrm{x})=\frac{\Sigma \mathrm{f}_{\mathrm{X}} \mathrm{x}_{\mathrm{i}}}{\Sigma \mathrm{f}_{\mathrm{i}}}=\frac{780}{30}=26$
Therefore, the mean of pages written per day $=26$.
5. The daily income of a sample of 50 employees are tabulated as follows :

Income (in Rs)	$\mathbf{1 - 2 0 0}$
Number of employees	$\mathbf{1 4}$

201-400
401-600
14
601-800
7
Find the mean daily income of employees.
Solution:

C.I	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{d}_{\mathbf{i}}=\left(\mathbf{x}_{\mathbf{i}}-\mathbf{a}\right)$	$\mathbf{F}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}} \mathbf{d}_{\mathbf{i}}$
$1-200$	100.5	-200	14	-2800
$201-400$	300.5	0	15	0
$401-600$	500.5	200	15	2800
$601-800$	700.5	400	7	2800
			$\Sigma \mathrm{f}_{\mathrm{i}}=50$	$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=2800$

\therefore Assumed mean, $\mathrm{a}=300.5$ and $\mathrm{d}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}-\mathrm{a}\right)$
$\bar{x}=a+\frac{\sum f_{\mathrm{f}} \mathrm{d}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$=300.5+2800 / 50$
$=356.5$
Hence, the average daily income of employees $=$ Rs. 356.5
6. An aircraft has 120 passenger seats. The number of seats occupied during 100 flights is given in the following table :
$\begin{array}{llllll}\text { Number of seats } & 100-104 & 104-108 & 108-112 & 112-116 & 116-120 \\ \text { Frequency } & 15 & 20 & 32 & 18 & 15\end{array}$
Determine the mean number of seats occupied over the flights.

Solution:

Class Interval	Class Marks $\left(\mathbf{x}_{\mathbf{i}}\right)$	Frequency $\left(\mathbf{f}_{\mathbf{i}}\right)$	Deviation $\left(\mathbf{d}_{\mathbf{i}}=\mathbf{x}_{\mathbf{i}}-\right.$ $\mathbf{a})$	$\mathbf{f}_{\mathbf{i}} \mathbf{d}_{\mathbf{i}}$
$100-104$	102	15	-8	-120
$104-108$	106	20	-4	-80
$108-112$	110	32	0	0
$112-116$	114	18	4	72
$116-120$	118	15	8	120
		$\mathrm{~N}=\Sigma \mathrm{f}_{\mathrm{i}}=100$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}=-8$

\therefore Assumed mean, $\mathrm{a}=110$
Class width, $\mathrm{h}=4$
And total observations, $\mathrm{N}=100$
Hence, finding mean,
$\operatorname{Mean}(\overline{\mathrm{x}})=\mathrm{a}+\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$=110+(-8 / 100)$
$=110-0.08$
$=109.92$
But we know that the seats cannot be in decimal.
Therefore, the number of seats $=109$.
7. The weights (in kg) of 50 wrestlers are recorded in the following table :

Weight (in kg)	$100-110$	$110-120$	$120-130$	$130-140$	$140-150$
Number of wrestlers	4	14	21	8	3

Find the mean weight of the wrestlers.

Solution:

Weight (in $\mathbf{k g})$	Number of Wrestlers $\left(\mathbf{f}_{\mathbf{i}}\right)$	Class Marks $\left(\mathbf{x}_{\mathbf{i}}\right)$	Deviation $\left(\mathbf{d}_{\mathbf{i}}=\mathbf{x}_{\mathbf{i}}-\mathbf{a}\right)$	$\mathbf{f}_{\mathbf{i} d_{\mathbf{i}}}$
$100-110$	4	105	-20	-80
$110-120$	14	115	-10	-140
$120-130$	21	125	0	0
$130-140$	8	135	10	80
$140-150$	3	145	20	60
	$\mathrm{~N}=\Sigma \mathrm{f}_{\mathrm{i}}=50$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}=-80$	

\therefore Assumed mean, (a) $=125$

Class width, $(\mathrm{h})=10$
and total observations, $(\mathrm{N})=50$
By step deviation method,
$\operatorname{Mean}(\bar{x})=a+\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}$
$\operatorname{Mean}(\overline{\mathrm{x}})=125+\frac{(-80)}{50}$
= $125-16$
$=123.4 \mathrm{~kg}$
Hence, mean weight of wrestlers $=123.4 \mathrm{~kg}$
8. The mileage ($\mathbf{k m}$ per litre) of 50 cars of the same model was tested by manufacturer and details are tabulated as given below :
Mileage (km/l)
Number of cars

10-12
7
12-14 14-16
16-18
1218
13

Find the mean mileage.
The manufacturer claimed that the mileage of the model was $16 \mathrm{~km} / \mathrm{litre}$. Do you agree with this claim?
Solution:

Mileage (km L.	Class -Marks ($\mathbf{x} \mathbf{i})$	Number of cars $\left(\mathbf{f}_{\mathbf{i}}\right)$	$\mathbf{f i x}_{\mathbf{i}}$
$10-12$	11	7	77
$12-14$	13	12	156
$14-16$	15	18	270
$16-18$	17	13	221
Total		$\Sigma \mathrm{f}_{\mathrm{i}}=50$	$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=724$

Here, $\Sigma \mathrm{f}_{\mathrm{i}}=50$

$$
\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=724
$$

\therefore Mean $\begin{aligned} \overline{\mathrm{X}} & =\frac{\sum \mathrm{f}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}} \\ & =724 / 50=14.48\end{aligned}$
Hence, mean mileage $=14.48 \mathrm{~km} / \mathrm{h}$
No, I don't agree with the claim because the manufacturer is claiming mileage $1.52 \mathrm{~km} / \mathrm{h}$ more than average mileage.
9. The following is the distribution of weights (in kg) of $\mathbf{4 0}$ persons :

| Weight (in kg) | $\mathbf{4 0 - 4 5}$ | $\mathbf{4 5 - 5 0}$ | $\mathbf{5 0 - 5 5}$ | $55-60$ | $60-65$ | $\mathbf{6 5 - 7 0}$ | $\mathbf{7 0 - 7 5}$ | $\mathbf{7 5 - 8 0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Number of persons | 4 | 4 | 13 | 5 | 6 | 5 | 2 | 1 |

Construct a cumulative frequency distribution (of the less than type) table for the data above.
Solution:

Weight (in kg)	Cumulative frequency
Less than 45	4
Less than 50	$4+4=8$
Less than 55	$8+13=21$
Less than 60	$21+5=26$
Less than 65	$26+6=32$

Less than 70	$32+5=37$
Less than 75	$37+2=39$
Less than 80	$39 \quad 1=40$

10. The following table shows the cumulative frequency distribution of marks of 800 students in an examination:

Marks	Number of students
Below 10	$\mathbf{1 0}$
Below 20	$\mathbf{5 0}$
Below 30	$\mathbf{1 3 0}$
Below 40	$\mathbf{2 7 0}$
Below 50	$\mathbf{4 4 0}$
Below 60	$\mathbf{5 7 0}$
Below 70	$\mathbf{6 7 0}$
Below 80	$\mathbf{7 4 0}$
Below 90	$\mathbf{7 8 0}$
Below 100	$\mathbf{8 0 0}$

Construct a frequency distribution table for the data above.

Solution:

The frequency distribution table for the given data is:

Class Interval	Number of students
$0-10$	10
$10-20$	$50-10=40$
$20-30$	$130-50=80$
$30-40$	$270-130=140$
$40-50$	$440-270=170$
$50-60$	$570-440=130$
$60-70$	$670-570=100$
$70-80$	$740-670=70$
$80-90$	$780-740=40$
$90-100$	$800-780=20$

11. Form the frequency distribution table from the following data :

Marks (out of 90)
More than or equal to 80
More than or equal to 70
More than or equal to 60
More than or equal to 50
More than or equal to 40
More than or equal to 30
Number of candidates

More than or equal to 20
More than or equal to 10
More than or equal to 0

4
6
11
17
23
27
30
32
34

Solution:

The frequency distribution table for the given data is:

Class Interval	Number of students
$0-10$	$34-32=2$
$10-20$	$32-30=2$
$20-30$	$30-27=3$
$30-40$	$27-23=4$
$40-50$	$23-17=6$
$50-60$	$17-11=6$
$60-70$	$11-6=5$
$70-80$	$6-4=2$
$80-90$	4

12. Find the unknown entries a, b, c, d, e, f in the following distribution of heights of students in a class:

Height Frequency Cumulative frequency
(in cm)
150-155
155-160
12 a
160-165
165-170
170-175
175-180
Total

10 c
d 43
e 48
$2 \quad f$
50

Solution:

Height (in cm)	Frequency	Cumulative frequency given	Cumulative frequency
$150-155$	12	a	12
$155-160$	b	25	$12+\mathrm{b}$
$160-165$	10	c	$22+\mathrm{b}$
$165-170$	d	43	$22+\mathrm{b}+\mathrm{d}$
$170-175$	e	48	$22+\mathrm{b}+\mathrm{d}+\mathrm{e}$
$175-180$	2	f	$24+\mathrm{b}+\mathrm{d}+\mathrm{e}$
Total	50		

On comparing last two tables, we get
$\mathrm{a}=12$
$\therefore 12+\mathrm{b}=25$
$\Rightarrow \mathrm{b}=25-12=13$
$22+\mathrm{b}=\mathrm{c}$
$\Rightarrow \mathrm{c}=22+13=35$
$22+\mathrm{b}+\mathrm{d}=43$
$\Rightarrow 22+13+\mathrm{d}=43$
$\Rightarrow d=43-35=8$
$22+b+d+e=48$
$\Rightarrow 22+13+8+e=48$
$\Rightarrow \mathrm{e}=48-43=5$
$24+b+d+e=f$

$$
\Rightarrow \mathrm{f}=24+13+8+5=50
$$

13. The following are the ages of 300 patients getting medical treatment in a hospital on a particular day:
Age (in years)
10-20 20-30 $\quad 30-40 \quad$ 40-50
50-60 60-70
Number of patients
$\begin{array}{lllll}60 & 42 & 55 & 70 & 53\end{array}$

Form:

(i) Less than type cumulative frequency distribution.
(ii) More than type cumulative frequency distribution.

Solution:
(i)

Less than type cumulative frequency distribution of the data is given below.

(i) Less than type	
Age (in year)	Number of patients
Less than 10	0
Less than 20	$60+0=60$
Less than 30	$60+42=102$
Less than 40	$102+55=157$
Less than 50	$157+70=227$
Less than 60	$227+53=280$
Less than 70	$280+20=300$

(ii)

More than type cumulative frequency distribution of the data is given below.

	(i) More than type
Age (in year)	Number of patients
More than or equals 10	$60+42+55+70+53+20=300$
More than or equals 20	$42+55+70+53+20=240$
More than or equals 30	$55+70+53+20=198$
More than or equals 40	$70+53+20=143$
More than or equals 50	$53+20=73$
More than or equals 60	20
More than or equals 70	0

14. Given below is a cumulative frequency distribution showing the marks secured by 50 students of a class:

Marks	Below 20	Below 40	Below 60	Below 80	Below
100		22	29	37	50

Form the frequency distribution table for the data.

Solution:

The frequency distribution table for given data.

Marks	Number of students
$0-20$	12
$20-40$	$22-17=5$
$40-60$	$29-22=7$
$60-80$	$37-29=8$
$80-100$	$50-37=13$

15. Weekly income of 600 families is tabulated below :

Weekly income Number of families
(in Rs)
0-1000 250
1000-2000 190
2000-3000 100
3000-4000 40
4000-5000 15
5000-6000
5
Total 600

Compute the median income.

Solution:

Weekly Income	Number of families $\left(\mathbf{f}_{\mathbf{i}}\right)$	Cumulative frequency $(\mathbf{c f})$
$0-1000$	250	250
$1000-2000$	190	$250+190=400$
$2000-3000$	100	$440+100=540$
$3000-4000$	40	$540+40=580$
$4000-5000$	15	$580+15=595$
$5000-6000$	5	$595+5=600$

According to the question,
$\mathrm{n}=600$
$\therefore \mathrm{n} / 2=600 / 2=300$
Cumulative frequency 440 lies in the interval 1000-2000.
Hence, lower median class, $1=1000$
$\mathrm{f}=190$,
$\mathrm{c}_{\mathrm{f}}=250$,
Class width, $\mathrm{h}=1000$
And total observation $n=600$
\therefore Median $=1+\frac{\left(\frac{n}{2}-\mathrm{cf}\right)}{\mathrm{f}} \times \mathrm{h}$
$=1000+\frac{(300-250)}{190} \times 1000$
$=1000+\frac{50}{190} \times 1000$
$=1000+5000 / 19$
$=1000+263.15=1263.15$
Hence, the median income is Rs.1263.15.
16. The maximum bowling speeds, in km per hour, of 33 players at a cricket coaching centre are given as follows:

Speed (km/h)	$\mathbf{8 5 - 1 0 0}$	$\mathbf{1 0 0 - 1 1 5}$	$\mathbf{1 1 5 - 1 3 0}$	$\mathbf{1 3 0 - 1 4 5}$
Number of players	11	9	8	5

Calculate the median bowling speed.

Solution:

First we construct the cumulative frequency table

Speed (in km/h)	Number of players	Cumulative frequency
$85-100$	11	11
$100-115$	9	$11+9=20$
$115-130$	8	$20+8=28$
$130-145$	5	$28+5=33$

It is given that, $\mathrm{n}=33$
$\therefore \mathrm{n} / 2=33 / 2=16.5$
Hence, the median class is $100-115$.
Where, lower $\operatorname{limit}(1)=100$
Frequency (f) $=9$
Cumulative frequency (cf) $=11$
And class width(h) $=15$
\therefore Median $=1+\frac{\left(\frac{n}{2}-c f\right)}{f} \times h$
$=100+\frac{(16.5-11)}{9} \times 15$
$=100+\frac{5.5 \times 15}{9}$
$=100+82.5 / 9$
$=100+9.17$
$=109.17$
Hence, the median bowling speed is $109.17 \mathrm{~km} / \mathrm{h}$.
17. The monthly income of 100 families are given as below :
Income (in Rs) Number of families

0-5000
8
5000-10000
26
10000-15000
15000-20000
41
20000-25000
16
25000-30000
3
30000-35000
3
35000-40000
2
1
Calculate the modal income.
Solution:
According to the data given,
The highest frequency $=41$,
41 lies in the interval 10000-15000.

Here, $\mathrm{l}=10000, \mathrm{f}_{\mathrm{m}}=41, \mathrm{f}_{1}=26, \mathrm{f}_{2}=16$ and $\mathrm{h}=5000$
\therefore Mode $=\mathrm{I}+\left(\frac{\mathrm{f}_{\mathrm{m}}-\mathrm{f}_{1}}{2 \mathrm{f}_{\mathrm{m}}-\mathrm{f}_{1}-\mathrm{f}_{2}}\right) \times \mathrm{h}$
$=10000+\left(\frac{41-26}{2 \times 41-26-16}\right) \times 5000$
$=10000+\left(\frac{15}{82-42}\right) \times 5000$
$=10000+\left(\frac{15}{40}\right) \times 5000$
$=10000+15 \times 125$
$=10000+1875$
$=11875$
Hence, the modal income $=$ Rs. 11875 per month.
18. The weight of coffee in 70 packets are shown in the following table :

Weight (in g)
200-201
201-202
202-203
203-204
204-205
205-206
Number of packets

12

26

20
9
2
1

Determine the modal weight.

Solution:

In the given data, the highest frequency is 26, which lies in the interval 201-202
Here, $\mathrm{l}=201, \mathrm{f}_{\mathrm{m}}=26, \mathrm{f}_{1}=12, \mathrm{f}_{2}=20$ and (class width) $\mathrm{h}=1$

$$
\begin{aligned}
& \therefore \text { Mode }=I+\left(\frac{f_{m}-f_{1}}{2 f_{m}-f_{1}-f_{2}}\right) \times h \\
& =201+\frac{26-12}{(2 \times 26-12-20)} \times 1 \\
& =201+\left(\frac{14}{52-32}\right) \\
& =201+14 / 20 \\
& =201+0.7 \\
& =201.7 \mathrm{~g}
\end{aligned}
$$

Hence, the modal weight $=201.7 \mathrm{~g}$.
19. Two dice are thrown at the same time. Find the probability of getting
(i) Same number on both dice.
(ii) Different numbers on both dice.

Solution:

Two dice are thrown at the same time.
So, total number of possible outcomes $=36$
(i) Same number on both dice.

Possible outcomes $=(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)$.
Hence, number of possible outcomes $=6$

Therefore, the probability of getting same number on both dice $=6 / 36=1 / 6$
(ii) Different number on both dice.

Hence, number of possible outcomes
$=36-$ Number of possible outcomes for same number on both dice
$=36-6=30$
Therefore, the probability of getting different number on both dice $=30 / 36=5 / 6$

20. Two dice are thrown simultaneously. What is the probability that the sum of the numbers appearing on the dice is

(i) 7 ? (ii) a prime number? (iii) 1 ?

Solution:

According to the question,
Two dice are thrown simultaneously.
So, that number of possible outcomes $=36$
(i) Sum of the numbers appearing on the dice is 7 .

So, the possible outcomes $=(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)$.
Hence, number of possible outcomes $=6$
\therefore the probability that the sum of the numbers appearing on the dice is $7=6 / 36=1 / 6$
(ii) Sum of the numbers appearing on the dice is a prime number i.e., $2,3,5,7$ and 11 .

So, the possible outcomes are $(1,1),(1,2),(2,1),(1,4),(2,3),(3,2),(4,1),(1,6),(2,5),(3,4)$, $(4,3),(5,2),(6,1),(5,6)=(6,5)$.
Hence, number of possible outcomes $=15$
\therefore the probability that the sum of the numbers appearing on the dice is a prime number $=15 / 36=$ 5/12
(iii) Sum of the numbers appearing on the dice is 1 .

It is not possible, so its probability is zero.
\therefore the probability that the sum of the numbers appearing on the dice is $1=0$

21. Two dice are thrown together. Find the probability that the product of the numbers on the top of the dice is

(i) 6 (ii) 12 (iii) 7

Solution:

Number of total outcomes $=36$
(i) When product of the numbers on the top of the dice $=6$.

The possible outcomes $=(1,6),(2,3),(3,2),(6,1)$.
Hence, number of possible ways $=4$
\therefore Probability that the product of the numbers on the top of the dice is $6=4 / 36=1 / 9$
(ii) When product of the numbers on the top of the dice $=12$.

The possible ways are $(2,6),(3,4),(4,3),(6,2)$.
Hence, number of possible ways $=4$
\therefore Probability that the product of the numbers on the top of the dice is $12=4 / 36=1 / 9$
(iii) Product of the numbers on the top of the dice cannot be 7 .

Hence, the probability is zero.
\therefore Probability that the product of the numbers on the top of the dice is $7=0$

