

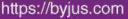
EXERCISE 8.1

PAGE NO: 89

	ue of tan A is B) ¾ (C)) 4/3	(D) 5/3
olution:			
According to the questi	on,		
$\cos A = 4/5 \dots (1)$			
We know,			
$\tan A = \sin A / \cos A$			
To find the value of sin	А,		
We have the equation,			
$\sin^2 \theta + \cos^2 \theta =$			
So, $\sin \theta = \sqrt{(1-\cos^2 \theta)^2}$	θ)		
Then,	2		
$\sin A = \sqrt{(1 - \cos \theta)}$			
$\sin^2 A = 1 - \cos^2 A$			
$\sin A = \sqrt{1 - \cos^2 \theta}$			
Substituting equation (1	l) in (2),		
We get,			
Sin A = $\sqrt{(1-(4/5)^2)}$			
$=\sqrt{(1-(16/25))}$			
$=\sqrt{(9/25)}$			
$= \frac{3}{4}$			
Therefore,	5 3		
$tan A = \frac{3}{5} \times$	$\frac{1}{4} = \frac{1}{4}$		
If $\sin A = \frac{1}{2}$, then the value	e of cot A is		
(A) $\sqrt{3}$ (B) $1/\sqrt{3}$ (C) $\sqrt{3}$			
olution:			
According to the questi	on,		
$\sin A = \frac{1}{2} \dots (1)$			
We know that,			
$\cot A = \frac{1}{\tan A} = \frac{\cos A}{\sin A}$	s A		
To find the value of cos	s A.		
We have the equation,	4		
$\sin^2\theta + \cos^2\theta =$			
So, $\cos \theta = \sqrt{(1-\sin^2)}$	θ)		
Then, $A = a/(1 \sin^2)$	(2)		
$\cos A = \sqrt{1-\sin^2}$ $\cos^2 A = 1-\sin^2$			
$\cos^{2} A = 1 - \sin^{2} A$	A		
	2 • >		
$\cos A = \sqrt{(1-\sin x)}$ Substituting equation 1			

 $\cos A = \sqrt{(1-1/4)} = \sqrt{(3/4)} = \sqrt{3/2}$ Substituting values of sin A and cos A in equation 2, we get $\cot A = (\sqrt{3}/2) \times 2 = \sqrt{3}$ 3. The value of the expression $[\csc (75^\circ + \theta) - \sec (15^\circ - \theta) - \tan (55^\circ + \theta) + \cot (35^\circ - \theta)]$ is (A) - 1**(B)** 0 (C) 1 **(D) 3 2** Solution: According to the question, We have to find the value of the equation. $\csc(75^\circ+\theta) - \sec(15^\circ-\theta) - \tan(55^\circ+\theta) + \cot(35^\circ-\theta)$ $= \operatorname{cosec}[90^{\circ} - (15^{\circ} - \theta)] - \operatorname{sec}(15^{\circ} - \theta) - \tan(55^{\circ} + \theta) + \cot[90^{\circ} - (55^{\circ} + \theta)]$ Since, cosec $(90^{\circ} - \theta) = \sec \theta$ And, $\cot(90^{\circ}-\theta) = \tan \theta$ We get, $= \sec(15^{\circ}-\theta) - \sec(15^{\circ}-\theta) - \tan(55^{\circ}+\theta) + \tan(55^{\circ}+\theta)$ = 04. Given that $\sin\theta = a b$, then $\cos\theta$ is equal to (C) $\sqrt{(b^2-a^2)/b}$ (D) $a/\sqrt{(b^2-a^2)/b}$ (A) $b/\sqrt{b^2 - a^2}$ $(\mathbf{B}) \mathbf{b/a}$ Solution: According to the question, $\sin \theta = a/b$ We know, $\sin^2 \theta + \cos^2 \theta = 1$ $\sin^2 A = 1 - \cos^2 A$ $\sin A = \sqrt{(1-\cos^2 A)}$ So, $\cos \theta = \sqrt{(1-a^2/b^2)} = \sqrt{((b^2-a^2)/b^2)} = \sqrt{(b^2-a^2)/b}$ Hence, $\cos \theta = \sqrt{(b^2 - a^2)/b}$ 5. If $\cos(\alpha + \beta) = 0$, then $\sin(\alpha - \beta)$ can be reduced to (A) cos β **(B)** cos 28 (C) sin a (D) sin 2α Solution: According to the question, $\cos(\alpha + \beta) = 0$ Since, $\cos 90^\circ = 0$ We can write, $\cos(\alpha + \beta) = \cos 90^{\circ}$ By comparing cosine equation on L.H.S and R.H.S, We get, $(\alpha + \beta) = 90^{\circ}$ $\alpha = 90^{\circ} - \beta$ Now we need to reduce $\sin(\alpha - \beta)$, So, we take, $sin(\alpha-\beta) = sin(90^{\circ}-\beta-\beta) = sin(90^{\circ}-2\beta)$ $sin(90^{\circ}-\theta) = cos \theta$ So, $sin(90^{\circ}-2\beta) = cos 2\beta$ Therefore, $sin(\alpha - \beta) = cos 2\beta$

6. The value of $(\tan 1^\circ \tan 2^\circ \tan 3^\circ \dots \tan 89^\circ)$ is (A) **0 (B)** 1 (C) 2 **(D)** ¹/₂ Solution: $\tan 1^\circ$. $\tan 2^\circ$. $\tan 3^\circ$ $\tan 89^\circ$ $= \tan 1^{\circ} \cdot \tan 2^{\circ} \cdot \tan 3^{\circ} \cdot \tan 43^{\circ} \cdot \tan 44^{\circ} \cdot \tan 45^{\circ} \cdot \tan 46^{\circ} \cdot \tan 47^{\circ} \cdot \tan 87^{\circ} \cdot \tan 88^{\circ} \cdot \tan 89^{\circ}$ Since, $\tan 45^\circ = 1$, = tan1°.tan 2°.tan 3°...tan 43°.tan 44°.1.tan 46°.tan 47°...tan 87°.tan 88°.tan 89° $= \tan 1^{\circ} \cdot \tan 2^{\circ} \cdot \tan 3^{\circ} \cdot \tan 43^{\circ} \cdot \tan 44^{\circ} \cdot 1 \cdot \tan(90^{\circ} - 44^{\circ}) \cdot \tan(90^{\circ} - 43^{\circ}) \cdot \tan(90^{\circ} - 3^{\circ}) \cdot \tan(90$ 2°).tan(90°-1°) Since, $tan(90^{\circ}-\theta) = \cot \theta$, $= \tan 1^{\circ} \cdot \tan 2^{\circ} \cdot \tan 3^{\circ} \cdot \tan 43^{\circ} \cdot \tan 44^{\circ} \cdot 1 \cdot \cot 44^{\circ} \cdot \cot 43^{\circ} \cdot \ldots \cot 3^{\circ} \cdot \cot 2^{\circ} \cdot \cot 1^{\circ}$ Since, $\tan \theta = (1/\cot \theta)$ $= \tan 1^\circ \cdot \tan 2^\circ \cdot \tan 3^\circ \cdot \cdot \tan 43^\circ \cdot \tan 44^\circ \cdot 1 \cdot (1/\tan 44^\circ) \cdot (1/\tan 43^\circ) \cdot \cdot \cdot (1/\tan 3^\circ) \cdot (1/\tan 2^\circ) \cdot (1/\tan 1^\circ)$ = $(\tan 1^\circ \times \frac{1}{\tan 1^\circ}).(\tan 2^\circ \times \frac{1}{\tan 2^\circ})...(\tan 44^\circ \times \frac{1}{\tan 44^\circ})$ = 1 Hence, $\tan 1^\circ \cdot \tan 2^\circ \cdot \tan 3^\circ \cdot \dots \cdot \tan 89^\circ = 1$ 7. If $\cos 9\alpha = \sin \alpha$ and $9\alpha < 90^{\circ}$, then the value of $\tan 5\alpha$ is (A) $1/\sqrt{3}$ **(B)** √3 (C) 1 **(D)** 0 Solution: According to the question, $\cos 9 \propto = \sin \propto \text{ and } 9 \propto < 90^{\circ}$ i.e. 9α is an acute angle We know that, $\sin(90^{\circ}-\theta) = \cos \theta$ So, $\cos 9 \propto = \sin (90^{\circ} - \propto)$ Since, $\cos 9\alpha = \sin(90^{\circ} - 9\alpha)$ and $\sin(90^{\circ} - \alpha) = \sin \alpha$ Thus, $\sin(90^{\circ}-9\propto) = \sin \propto$ 90°-9∝ =∝ $10 \propto = 90^{\circ}$ $\propto = 9^{\circ}$ Substituting $\propto = 9^{\circ}$ in tan 5 \propto , we get, $\tan 5 \propto = \tan (5 \times 9) = \tan 45^\circ = 1$ \therefore , tan $5 \propto = 1$



EXERCISE 8.2

PAGE NO: 93

Write 'True' or 'False' and justify your answer in each of the following: 1. tan 47°/cot 43 ° = 1 Solution: True

 $\frac{\text{Justification:}}{\text{Since, tan }(90^\circ - \theta) = \cot \theta}$ $\frac{\tan 47^\circ}{\cot 43^\circ} = \frac{\tan(90^\circ - 43^\circ)}{\cot 43^\circ}$ $\frac{\tan 47^\circ}{\cot 43^\circ} = \frac{\cot 43^\circ}{\cot 43^\circ}$ $\frac{\tan 47^\circ}{\cot 43^\circ} = 1$

2. The value of the expression $(\cos^2 23^\circ - \sin^2 67^\circ)$ is positive. Solution:

False <u>Justification:</u> Since, $(a^2-b^2) = (a+b)(a-b)$ $\cos^2 23^\circ - \sin^2 67^\circ = (\cos 23^\circ + \sin 67^\circ)(\cos 23^\circ - \sin 67^\circ)$ $= [\cos 23^\circ + \sin(90^\circ - 23^\circ)] [\cos 23^\circ - \sin(90^\circ - 23^\circ)]$ $= (\cos 23^\circ + \cos 23^\circ)(\cos 23^\circ - \cos 23^\circ) (\because \sin(90^\circ - \theta) = \cos \theta)$ $= (\cos 23^\circ + \cos 23^\circ).0$ = 0, which is neither positive nor negative

3. The value of the expression $(\sin 80^\circ - \cos 80^\circ)$ is negative. Solution:

False <u>Justification:</u> We know that, $\sin \theta$ increases when $0^{\circ} \le \theta \le 90^{\circ}$ $\cos \theta$ decreases when $0^{\circ} \le \theta \le 90^{\circ}$ And $(\sin 80^{\circ} - \cos 80^{\circ}) = (\text{increasing value-decreasing value})$ = a positive value.Therefore, $(\sin 80^{\circ} - \cos 80^{\circ}) > 0$.

4. $\sqrt{((1 - \cos^2 \theta) \sec^2 \theta)} = \tan \theta$ Solution:

True Justification:

LHS:
$$\sqrt{((1 - \cos^2 \theta) \sec^2 \theta)}$$

= $\sqrt{\sin^2 \theta \sec^2 \theta}$
(: $\sin^2 \theta + \cos^2 \theta = 1 \Rightarrow \sin^2 \theta = 1 - \cos^2 \theta$)
= $\sqrt{\frac{\sin^2 \theta}{\cos^2 \theta}}$ (Since, $\sec^2 \theta = \frac{1}{\cos^2 \theta}$)
= $\frac{\sin \theta}{\cos \theta}$
= $\tan \theta$
= RHS
5. If $\cos A + \cos^2 A = 1$, then $\sin^2 A + \sin^4 A = 1$.
Solution:
True
Justification:
According to the question,
 $\cos A + \cos^2 A = 1$
i.e., $\cos A = 1 - \cos^2 A$
Since,
 $\sin^2 \theta + \cos^2 \theta = 1$
 $\sin^2 \theta = 1 - \cos^2 \theta$)
We get,
 $\cos A = \sin^2 A \dots (1)$
Squaring L.H.S and R.H.S,
 $\cos^2 A = \sin^4 A \dots (2)$
To find $\sin^2 A + \sin^4 A = 1$
Adding equations (1) and (2),
We get
 $\sin^2 A + \sin^4 A = \cosh A + \cos^2 A$
Therefore, $\sin^2 A + \sin^4 A = 1$
6. ($\tan \theta + 2$) ($2 \tan \theta + 1$) = $5 \tan \theta + \sec^2 \theta$.
Solution:
False
Justification:
L.H.S = ($\tan \theta + 2$) ($2 \tan \theta + 1$) = $5 \tan \theta + \sec^2 \theta$.
Solution:
False
Justification:
L.H.S = ($\tan \theta + 2$) ($2 \tan \theta + 1$) = $5 \tan \theta + 2$
 $= 2 \tan^2 \theta + 5 \tan \theta + 2$
Since, $\sec^2 \theta - \tan^2 \theta = 1$, we get, $\tan^2 \theta = \sec^2 \theta - 1$
 $= 2(\sec^2 \theta - 1) + 5 \tan \theta + 2$
 $= 2 \sec^2 \theta - 2 + 5 \tan \theta + 2$
 $= 2 \sec^2 \theta - 2 + 5 \tan \theta + 2$
 $= 2 \sec^2 \theta - 2 + 5 \tan \theta + 2$
 $= 2 \sec^2 \theta - 2 + 5 \tan \theta + 2$
 $= 2 \sec^2 \theta - 2 + 5 \tan \theta + 2$
 $= 2 \sec^2 \theta - 2 + 5 \tan \theta + 2$
 $= 5 \tan \theta + 2 \cos^2 \theta = R + I.S$
 \therefore L.H.S \neq R.H.S

EXERCISE 8.3

PAGE NO: 95

Prove the following (from Q.1 to Q.7): 1. $\sin \theta / (1 + \cos \theta) + (1 + \cos \theta) / \sin \theta = 2 \operatorname{cosec} \theta$ Solution: L.H.S= $\frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta}$ Taking the L.C.M of the denominators, We get, $\sin^2 \theta + (1 + \cos \theta)^2$ $(1+\cos\theta).\sin\theta$ $\sin^2 \theta + 1 + \cos^2 \theta + 2\cos\theta$ $(1+\cos\theta).\sin\theta$ Since, $\sin^2\theta + \cos^2\theta = 1$ 1+1+2cosθ $(1+\cos\theta).\sin\theta$ 2+2 cos θ $(1 + \cos \theta) \cdot \sin \theta$ $2(1+\cos\theta)$ $(1+\cos\theta).\sin\theta$ Since, $1/\sin\theta = \csc\theta$ $= 2 \cos \theta$ R.H.S Hence proved. 2. $\tan A/(1+\sec A) - \tan A/(1-\sec A) = 2\csc A$ Solution: L.H.S: tan A tan A 1+secA 1-secA Taking LCM of the denominators, $\tan A(1-\sec A)-\tan A(1+\sec A)$ $(1+\sec A)(1-\sec A)$ Since, $(1 + \sec A) (1 - \sec A) = 1 - \sec^2 A$ $\tan A(1-\sec A-1-\sec A)$ 1-sec² A tan A(-2 sec A) 1-sec² A 2 tan A.sec A sec² A-1 Since, $\sec^2 A - \tan^2 A = 1$ $\sec^2 A - 1 = \tan^2 A$

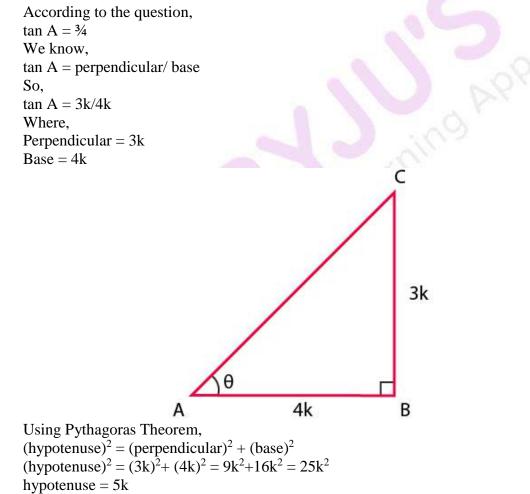
$$= \frac{2 \tan A \cdot \sec A}{\tan^2 A}$$

Since, sec A = (1/cos A) and tan A = (sin A/ cos A)
$$= \frac{2 \sec A}{\tan A} = \frac{2 \cos A}{\cos A \sin A}$$

$$= \frac{2}{\sin A}$$

= 2 cosec A ($\because \frac{1}{\sin A} = \text{cosec A}$)
= R.H.S
Hence proved.

3. If tan A = ³/₄, then sinA cosA = 12/25 Solution:



To find sin A and cos A,

$$\sin A = \frac{\text{perpendicular}}{\text{hypotenuse}} = \frac{3k}{5k} = \frac{3}{5}$$
$$\cos A = \frac{\text{base}}{\text{hypotenuse}} = \frac{4k}{5k} = \frac{4}{5}$$
Multiplying sin A and cos A,
$$\sin A \cos A = \frac{3}{5} \times \frac{4}{5} = \frac{12}{25}$$
Hence, proved.

4. $(\sin \alpha + \cos \alpha) (\tan \alpha + \cot \alpha) = \sec \alpha + \csc \alpha$ Solution:

L.H.S:

 $(\sin \alpha + \cos \alpha) (\tan \alpha + \cot \alpha)$ As we know,

$$\tan A = \frac{\sin A}{\cos A}$$

$$\cot A = \frac{\cos A}{\sin A}$$

$$= (\sin \alpha + \cos \alpha) \left(\frac{\sin \alpha}{\cos \alpha} + \frac{\cos \alpha}{\sin \alpha}\right)$$

$$= (\sin \alpha + \cos \alpha) \left(\frac{\sin^2 \alpha + \cos^2 \alpha}{\sin \alpha \cos \alpha}\right)$$

$$[\because \sin^2 \alpha + \cos^2 \alpha = 1]$$

$$= (\sin \alpha + \cos \alpha) \left(\frac{1}{\sin \alpha \cos \alpha}\right)$$

$$= \frac{\sin \alpha}{\sin \alpha \cos \alpha} + \frac{\cos \alpha}{\sin \alpha \cos \alpha}$$

$$= \frac{1}{\cos \alpha} + \frac{1}{\sin \alpha}$$

$$= \sec \alpha + \csc \alpha [\because \frac{1}{\cos \alpha} = \sec \alpha \text{ and } \frac{1}{\sin \alpha} = \csc \alpha]$$

$$= \text{R.H.S}$$

Hence, proved.

5. $(\sqrt{3}+1) (3 - \cot 30^\circ) = \tan^3 60^\circ - 2 \sin 60^\circ$ Solution:

L.H.S: $(\sqrt{3} + 1) (3 - \cot 30^{\circ})$ = $(\sqrt{3} + 1) (3 - \sqrt{3}) [\because \cos 30^{\circ} = \sqrt{3}]$ = $(\sqrt{3} + 1) \sqrt{3} (\sqrt{3} - 1) [\because (3 - \sqrt{3}) = \sqrt{3} (\sqrt{3} - 1)]$ = $((\sqrt{3})^2 - 1) \sqrt{3} [\because (\sqrt{3} + 1)(\sqrt{3} - 1) = ((\sqrt{3})^2 - 1)]$ = $(3 - 1) \sqrt{3}$ = $2\sqrt{3}$ Similarly solving R.H.S: $\tan^3 60^{\circ} - 2 \sin 60^{\circ}$ Since, $\tan 60^{\circ} = \sqrt{3}$ and $\sin 60^{\circ} = \sqrt{3}/2$, We get,

 $(\sqrt{3})^3 - 2.(\sqrt{3}/2) = 3\sqrt{3} - \sqrt{3}$ = $2\sqrt{3}$ Therefore, L.H.S = R.H.S Hence, proved.

6. 1 + (cot² α /1+cosec α = cosec α Solution:

> L.H.S: Since, $\cot^2 \alpha = \frac{\cos^2 \alpha}{\sin^2 \alpha}$ and $\csc \alpha = \frac{1}{\sin \alpha}$ We get, $\frac{\cot^2 \alpha}{\cot^2 \alpha} = 1 + \frac{\cos^2 \alpha / \sin^2 \alpha}{1 + 1 / \sin \alpha}$ 1 +1+cosec α $\cos^2 \alpha / \sin^2 \alpha$ = 1+ sinα+1 $\sin \alpha$ cos² α = 1 + $\sin \alpha (1 + \sin \alpha)$ $\sin \alpha + \sin^2 \alpha + \cos^2 \alpha$ $\sin \alpha + \sin^2 \alpha$

And, we know that,

```
\sin^{2} \alpha + \cos^{2} \alpha = 1
= \frac{1 + \sin \alpha}{\sin \alpha (1 + \sin \alpha)}
Since,
\frac{1}{\sin \alpha} = \csc \alpha
= \frac{1}{\sin \alpha} = \csc \alpha
= R.H.S
```

7. $\tan \theta + \tan (90^\circ - \theta) = \sec \theta \sec (90^\circ - \theta)$ Solution:

> L.H.S= Since, $\tan (90^\circ - \theta) = \cot \theta$ $\tan \theta + \tan (90^\circ - \theta) = \tan \theta + \cot \theta$

sin θ cosθ $\sin \theta$ cosθ $\sin^2 \theta + \cos^2 \theta$ $\sin\theta\cos\theta$ Since, $\sin^2 \theta + \cos^2 \theta = 1$ 1 $\sin\theta\cos\theta$ sin θ cosθ $= \sec \theta \csc \theta$ Since, $\csc \theta = \sec (90^{\circ} - \theta)$ $= \sec \theta \sec (90^\circ - \theta)$ = R.H.SHence, proved.

EXERCISE 8.4

P&GE NO: 99

```
1. If \csc\theta + \cot\theta = p, then prove that \cos\theta = (p^2 - 1)/(p^2 + 1).
Solution:
              According to the question,
              \csc \theta + \cot \theta = p
              Since.
              \operatorname{cosec} \theta = \frac{1}{\sin \theta} \& \cot \theta = \frac{\cos \theta}{\sin \theta}
               \frac{1}{\sin\theta} + \frac{\cos\theta}{\sin\theta} = p
               1+cosθ
                 \frac{1}{\sin \theta} = p
               Squaring on L.H.S and R.H.S,
               \left(\frac{1+\cos\theta}{\sin\theta}\right)^2 = p^2
               \frac{1+\cos^2\theta+2\cos\theta}{2} = p^2
                         sin^2 \theta
               Applying component and dividend rule,
               \frac{(1+\cos^2\theta+2\cos\theta)-\sin^2\theta}{(1+\cos^2\theta+2\cos\theta)+\sin^2\theta} = \frac{p^2-1}{p^2+1}
               \frac{(1-\sin^2\theta)+\cos^2\theta+2\cos\theta}{\sin^2\theta+\cos^2\theta+1+2\cos\theta} = \frac{p^2-1}{p^2+1}
               Since.
               1 - \sin^2 \theta = \cos^2 \theta \& \sin^2 \theta + \cos^2 \theta = 1
               \frac{\cos^2\theta + \cos^2\theta + 2\cos\theta}{1 + 1 + 2\cos\theta} = \frac{p^2 - 1}{p^2 + 1}
                        1+1+2cosθ
               \frac{2\cos^2\theta + 2\cos\theta}{2 + 2\cos\theta} = \frac{p^2 - 1}{p^2 + 1}
               \frac{2\cos\theta(\cos\theta+1)}{2(\cos\theta+1)} = \frac{p^2-1}{p^2+1}
                    2 (cosθ+1)
               \cos \theta = \frac{p^2 - 1}{r}
                                    p^2 + 1
                            Hence, proved.
```

2. Prove that $\sqrt{(\sec^2 \theta + \csc^2 \theta)} = \tan \theta + \cot \theta$ Solution: L.H.S=

 $\sqrt{(\sec^2 \theta + \csc^2 \theta)}$ Since,

$$\sec^{2} \theta = \frac{1}{\cos^{2} \theta} \& \csc^{2} \theta = \frac{1}{\sin^{2} \theta}$$

$$= \sqrt{\frac{1}{\cos^{2} \theta} + \frac{1}{\sin^{2} \theta}}$$

$$= \sqrt{\frac{\sin^{2} \theta + \cos^{2} \theta}{\cos^{2} \theta \sin^{2} \theta}}$$
Since,

$$\sin^{2} \theta + \cos^{2} \theta = 1$$

$$= \sqrt{\frac{1}{\cos^{2} \theta \sin^{2} \theta}}$$

$$= \frac{1}{\sqrt{\cos^{2} \theta \sin^{2} \theta}}$$
Since,

$$1 = \sin^{2} \theta + \cos^{2} \theta$$

$$= \frac{\sin^{2} \theta + \cos^{2} \theta}{\cos \theta \sin \theta}$$

$$= \frac{\sin^{2} \theta + \cos^{2} \theta}{\cos \theta \sin \theta} + \frac{\cos^{2} \theta}{\cos \theta \sin \theta}$$
Since,

$$\frac{\sin^{2} \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$$
Since,

$$\frac{\sin \theta}{\cos \theta} = \tan \theta \& \frac{\cos \theta}{\sin \theta} = \cot \theta$$

$$= \tan \theta + \cot \theta$$

$$= \text{R.H.S}$$
Hence, proved.

3. The angle of elevation of the top of a tower from certain point is 30° . If the observer moves 20 metres towards the tower, the angle of elevation of the top increases by 15° . Find the height of the tower.

Solution:

Let PR = h meter, be the height of the tower.

The observer is standing at point Q such that, the distance between the observer and tower is QR = (20+x) m, where QR = QS + SR = 20 + x $\angle PQR = 30^{\circ}$

 $\angle PSR = \theta$

Ρ h 300 θ xm ▶ R In $\triangle PQR$, $\tan 30^\circ = \frac{h}{20+x} [\because, \tan \theta = \frac{\text{perpendicular}}{\text{base}}]$ $\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{20+x} [\because, \tan 30^\circ = \frac{1}{\sqrt{3}}]$ Rearranging the terms, We get $20 + x = \sqrt{3}h$ \Rightarrow x = $\sqrt{3h} - 20 \dots eq.1$ In $\triangle PSR$, $\tan \theta = h/x$ Since, angle of elevation increases by 15° when the observer moves 20 m towards the tower. We have. $\theta = 30^\circ + 15^\circ = 45^\circ$ So. $\tan 45^\circ = h/x$ $\Rightarrow 1 = h/x$ \Rightarrow h = x Substituting x=h in eq. 1, we get $h = \sqrt{3} h - 20$ $\Rightarrow \sqrt{3} h - h = 20$ $\Rightarrow h (\sqrt{3} - 1) = 20$ $\Rightarrow h = \frac{20}{\sqrt{3} - 1}$ Rationalizing the denominator, we have $\Rightarrow h = \frac{20}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$ $\Rightarrow h = \frac{20(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}$ $=\frac{20\left(\sqrt{3}+1\right)}{3-1}$ $=\frac{20(\sqrt{3}+1)}{2}$ $= 10(\sqrt{3}+1)$ Hence, the required height of the tower is $10(\sqrt{3}+1)$ meter.

4. If $1 + \sin^2\theta = 3\sin\theta\cos\theta$, then prove that $\tan\theta = 1$ or $\frac{1}{2}$. Solution: Given: $1 + \sin^2 \theta = 3 \sin \theta \cos \theta$ Dividing L.H.S and R.H.S equations with $\sin^2 \theta$, We get. $\frac{1+\sin^2\theta}{\sin^2\theta} = \frac{3\sin\theta\cos\theta}{\sin^2\theta}$ $\Rightarrow \frac{1}{\sin^2 \theta} + 1 = \frac{3\cos \theta}{\sin \theta}$ $\csc^2 \theta + 1 = 3 \cot \theta$ Since, $\csc^2 \theta - \cot^2 \theta = 1 \Rightarrow \csc^2 \theta = \cot^2 \theta + 1$ $\Rightarrow \cot^2 \theta + 1 + 1 = 3 \cot \theta$ $\Rightarrow \cot^2 \theta + 2 = 3 \cot \theta$ $\Rightarrow \cot^2 \theta - 3 \cot \theta + 2 = 0$ Splitting the middle term and then solving the equation, $\Rightarrow \cot^2 \theta - \cot \theta - 2 \cot \theta + 2 = 0$ $\Rightarrow \cot \theta (\cot \theta - 1) - 2(\cot \theta + 1) = 0$ $\Rightarrow (\cot \theta - 1)(\cot \theta - 2) = 0$ $\Rightarrow \cot \theta = 1, 2$ Since. $\tan \theta = 1/\cot \theta$ $\tan \theta = 1, \frac{1}{2}$ Hence, proved.

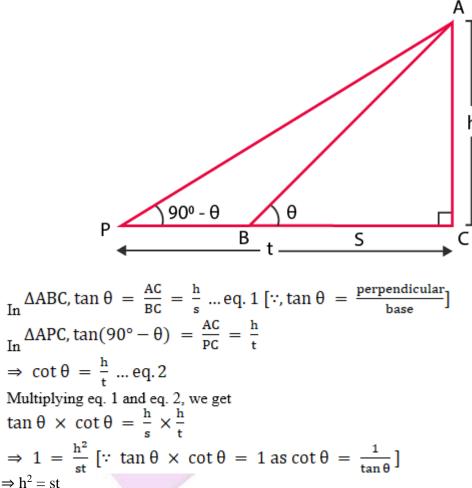
5. Given that $\sin\theta + 2\cos\theta = 1$, then prove that $2\sin\theta - \cos\theta = 2$. Solution:

Given: $\sin \theta + 2 \cos \theta = 1$ Squaring on both sides, $(\sin \theta + 2 \cos \theta)^2 = 1$ $\Rightarrow \sin^2 \theta + 4 \cos^2 \theta + 4\sin \theta \cos \theta = 1$ Since, $\sin^2 \theta = 1 - \cos^2 \theta$ and $\cos^2 \theta = 1 - \sin^2 \theta$ $\Rightarrow (1 - \cos^2 \theta) + 4(1 - \sin^2 \theta) + 4\sin \theta \cos \theta = 1$ $\Rightarrow 1 - \cos^2 \theta + 4 - 4 \sin^2 \theta + 4\sin \theta \cos \theta = 1$ $\Rightarrow -4 \sin^2 \theta - \cos^2 \theta + 4\sin \theta \cos \theta = -4$ $\Rightarrow 4 \sin^2 \theta + \cos^2 \theta - 4\sin \theta \cos \theta = 4$ We know that, $a^2 + b^2 - 2ab = (a - b)^2$ So, we get, $(2\sin \theta - \cos \theta)^2 = 4$ $\Rightarrow 2\sin \theta - \cos \theta = 2$ Hence proved.

6. The angle of elevation of the top of a tower from two points distant s and t from its foot are complementary. Prove that the height of the tower is \sqrt{st} .

Solution:

Let BC = s; PC = t Let height of the tower be AB = h. $\angle ABC = \theta$ and $\angle APC = 90^{\circ} - \theta$ (: the angle of elevation of the top of the tower from two points P and B are complementary)

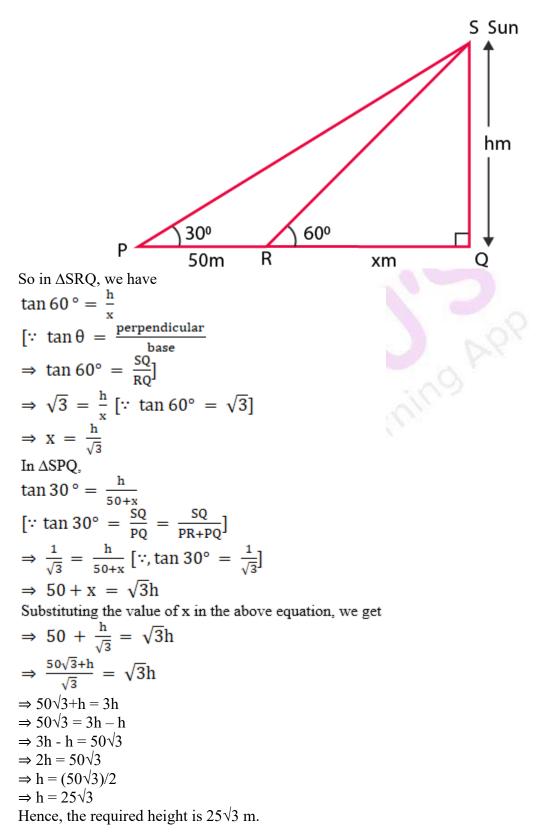


 $\Rightarrow h = \sqrt{st}$ Hence the height of the tower is \sqrt{st} .

7. The shadow of a tower standing on a level plane is found to be 50 m longer when Sun's elevation is 30° than when it is 60°. Find the height of the tower.

Solution:

Let SQ = h be the tower. $\angle SPQ = 30^{\circ} \text{ and } \angle SRQ = 60^{\circ}$ According to the question, the length of shadow is 50 m long hen angle of elevation of the sun is 30° than when it was 60° . So, PR = 50 m and RQ = x m

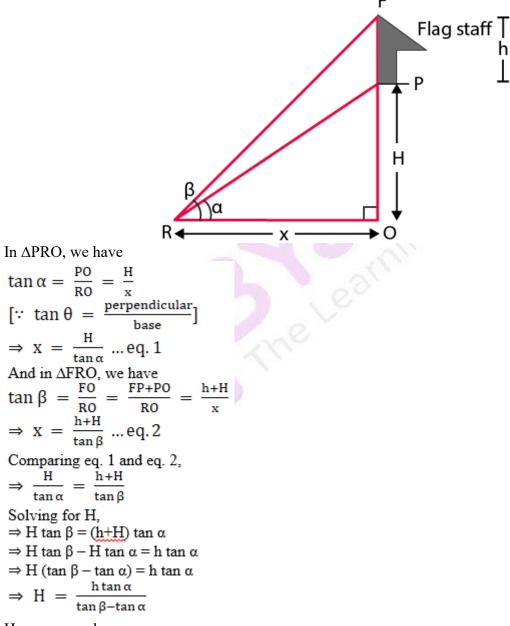


8. A vertical tower stands on a horizontal plane and is surmounted by a vertical flag staff of height

h. At a point on the plane, the angles of elevation of the bottom and the top of the flag staff are α and β , respectively. Prove that the height of the tower is $[h \tan \alpha/(\tan \beta - \tan \alpha)]$. Solution:

Given that a vertical flag staff of height h is surmounted on a vertical tower of height H(say), such that FP = h and FO = H.

The angle of elevation of the bottom and top of the flag staff on the plane is $\angle PRO = \alpha$ and $\angle FRO = \beta$ respectively



Hence, proved.

9. If $tan\theta + sec\theta = l$, then prove that $sec\theta = (l^2 + 1)/2l$. Solution:

Given: $\tan \theta + \sec \theta = 1 \dots \text{eq. } 1$

Multiplying and dividing by (sec θ – tan θ) on numerator and denominator of L.H.S, (sec θ +tan θ) (sec θ -tan θ)

$$\frac{\sec^{2} \theta - \tan \theta}{\sec \theta - \tan \theta} = 1$$

$$\Rightarrow \frac{\sec^{2} \theta - \tan^{2} \theta}{\sec \theta - \tan \theta} = 1$$
Since, $\sec^{2} \theta - \tan^{2} \theta = 1$

$$\Rightarrow \frac{1}{\sec \theta - \tan \theta} = 1$$
So, $\sec \theta - \tan \theta = 1$...eq.2
Adding eq. 1 and eq. 2, we get
 $(\tan \theta + \sec \theta) + (\sec \theta - \tan \theta) = 1$

$$\Rightarrow 2 \sec \theta = \frac{1^{2} + 1}{1}$$

$$\Rightarrow \sec \theta = \frac{1^{2} + 1}{21}$$
Hence, proved.