EXERCISE 9.1

Choose the correct answer from the given four options in the following questions:

1. If radii of two concentric circles are 4 cm and 5 cm , then the length of each chord of one circle which is tangent to the other circle is
(A) 3 cm
(B) 6 cm
(C) 9 cm
(D) 1 cm

Solution:

According to the question,
$\mathrm{OA}=4 \mathrm{~cm}, \mathrm{OB}=5 \mathrm{~cm}$
And, $\mathrm{OA} \perp \mathrm{BC}$
Therefore, $\mathrm{OB}^{2}=\mathrm{OA}^{2}+\mathrm{AB}^{2}$

$$
\begin{array}{ll}
\Rightarrow & 5^{2}=4^{2}+\mathrm{AB}^{2} \\
\Rightarrow & \mathrm{AB}=\sqrt{ }(25-16)=3 \mathrm{~cm} \\
\Rightarrow & \mathrm{BC}=2 \mathrm{AB}=2 \times 3 \mathrm{~cm}=6 \mathrm{~cm}
\end{array}
$$

2. In Fig. 9.3, if $\mathrm{AOB}=125^{\circ}$, then COD is equal to
(A) 62.5°
(B) 45°
(C) 35°
(D) 55°

Fig. 9.3

Solution:

ABCD is a quadrilateral circumscribing the circle
We know that, the opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the center of the circle.
So, we have
$\angle \mathrm{AOB}+\angle \mathrm{COD}=180^{\circ}$
$125^{\circ}+\angle \mathrm{COD}=180^{\circ}$
$\angle \mathrm{COD}=55^{\circ}$
3. In Fig. 9.4, AB is a chord of the circle and AOC is its diameter such that $\mathrm{ACB}=50^{\circ}$. If AT is the tangent to the circle at the point A, then BAT is equal to
(A) 65°
(B) 60°
(C) 50°
(D) 40°

Fig. 9.4

Solution:

According to the question,
A circle with centre O , diameter AC and $\angle \mathrm{ACB}=50^{\circ}$
AT is a tangent to the circle at point A
Since, angle in a semicircle is a right angle
$\angle \mathrm{CBA}=90^{\circ}$
By angle sum property of a triangle,
$\angle \mathrm{ACB}+\angle \mathrm{CAB}+\angle \mathrm{CBA}=180^{\circ}$
$50^{\circ}+\angle \mathrm{CAB}+90^{\circ}=180^{\circ}$
$\angle \mathrm{CAB}=40^{\circ} \ldots$ (1)
Since tangent to at any point on the circle is perpendicular to the radius through point of contact,
We get,
$\mathrm{OA} \perp \mathrm{AT}$
$\angle \mathrm{OAT}=90^{\circ}$
$\angle \mathrm{OAT}+\angle \mathrm{BAT}=90^{\circ}$
$\angle \mathrm{CAT}+\angle \mathrm{BAT}=90^{\circ}$
$40^{\circ}+\angle \mathrm{BAT}=90^{\circ}$ [from equation (1)]
$\angle \mathrm{BAT}=50^{\circ}$
4. From a point P which is at a distance of 13 cm from the centre O of a circle of radius 5 cm , the pair of tangents $P Q$ and $P R$ to the circle are drawn. Then the area of the quadrilateral $P Q O R$ is
(A) $60 \mathrm{~cm}^{2}$
(B) $65 \mathrm{~cm}^{2}$
(C) $30 \mathrm{~cm}^{2}$
(D) $32.5 \mathrm{~cm}^{2}$

Solution:

Construction: Draw a circle of radius 5 cm with center O .
Let P be a point at a distance of 13 cm from O .
Draw a pair of tangents, $P Q$ and $P R$.
$\mathrm{OQ}=\mathrm{OR}=$ radius $=5 \mathrm{~cm} \ldots$ equation (1)
And $\mathrm{OP}=13 \mathrm{~cm}$

We know that, tangent to at any point on the circle is perpendicular to the radius through point of contact,
Hence, we get,
$\mathrm{OQ} \perp \mathrm{PQ}$ and $\mathrm{OR} \perp \mathrm{PR}$
$\triangle \mathrm{POQ}$ and $\triangle \mathrm{POR}$ are right-angled triangles.
Using Pythagoras Theorem in $\triangle \mathrm{PQO}$,
$(\text { Base })^{2}+(\text { Perpendicular })^{2}=(\text { Hypotenuse })^{2}$
$(\mathrm{PQ})^{2}+(\mathrm{OQ})^{2}=(\mathrm{OP})^{2}$
$(\mathrm{PQ})^{2}+(5)^{2}=(13)^{2}$
$(\mathrm{PQ})^{2}+25=169$
$(P Q)^{2}=144$
$\mathrm{PQ}=12 \mathrm{~cm}$
Tangents through an external point to a circle are equal.
So,
$\mathrm{PQ}=\mathrm{PR}=12 \mathrm{~cm}$.
Therefore, Area of quadrilateral $\mathrm{PQRS}, \mathrm{A}=$ area of $\triangle \mathrm{POQ}+$ area of $\triangle \mathrm{POR}$
Area of right angled triangle $=1 / 2 \times$ base \times perpendicular
$\mathrm{A}=(1 / 2 \times \mathrm{OQ} \times \mathrm{PQ})+(1 / 2 \times \mathrm{OR} \times \mathrm{PR})$
$A=(1 / 2 \times 5 \times 12)+(1 / 2 \times 5 \times 12)$
$A=30+30=60 \mathrm{~cm}^{2}$
5. At one end A of a diameter $A B$ of a circle of radius 5 cm , tangent $X A Y$ is drawn to the circle. The length of the chord CD parallel to $X Y$ and at a distance 8 cm from A is
(A) 4 cm
(B) 5 cm
(C) 6 cm
(D) 8 cm

Solution:

According to the question,
Radius of circle, $\mathrm{AO}=\mathrm{OC}=5 \mathrm{~cm}$
$\mathrm{AM}=8 \mathrm{CM}$
$\mathrm{AM}=\mathrm{OM}+\mathrm{AO}$
$\mathrm{OM}=\mathrm{AM}-\mathrm{AO}$
Substituting these values in the equation,
$\mathrm{OM}=(8-5)=3 \mathrm{CM}$
OM is perpendicular to the chord CD.
In $\triangle \mathrm{OCM}<\mathrm{OMC}=90^{\circ}$
By Pythagoras theorem,
$\mathrm{OC}^{2}=\mathrm{OM}^{2}+\mathrm{MC}^{2}$
Therefore,
$\mathrm{CD}=2 \times \mathrm{CM}=8 \mathrm{~cm}$

EXERCISE 9.2

Write 'True' or 'False' and justify your answer in each of the following:

1. If a chord $A B$ subtends an angle of 60° at the centre of a circle, then angle between the tangents at A and B is also 60°.
Solution:
False
Justification:
For example,
Consider the given figure. In which we have a circle with centre O and $A B$ a chord with $\angle \mathrm{AOB}=60^{\circ}$

Since, tangent to any point on the circle is perpendicular to the radius through point of contact,
We get,
$\mathrm{OA} \perp \mathrm{AC}$ and $\mathrm{OB} \perp \mathrm{CB}$
$\angle \mathrm{OBC}=\angle \mathrm{OAC}=90^{\circ} \ldots \mathrm{eq}(1)$
Using angle sum property of quadrilateral in Quadrilateral AOBC,
We get,
$\angle \mathrm{OBC}+\angle \mathrm{OAC}+\angle \mathrm{AOB}+\angle \mathrm{ACB}=360^{\circ}$
$90^{\circ}+90^{\circ}+60^{\circ}+\angle \mathrm{ACB}=360^{\circ}$
$\angle \mathrm{ACB}=120^{\circ}$
Hence, the angle between two tangents is 120°.
Therefore, we can conclude that, the given statement is false.
2. The length of tangent from an external point on a circle is always greater than the radius of the circle.
Solution:

False
Justification:
Length of tangent from an external point P on a circle may or may not be greater than the radius of the circle.
3. The length of tangent from an external point P on a circle with centre O is always less than $O P$. Solution:

True
Justification:
Consider the figure of a circle with centre O.
Let PT be a tangent drawn from external point P .
Now, Joint OT.
$\mathrm{OT} \perp \mathrm{PT}$

We know that,
Tangent at any point on the circle is perpendicular to the radius through point of contact Hence, OPT is a right-angled triangle formed.
We also know that,
In a right angled triangle, hypotenuse is always greater than any of the two sides of the triangle.
Hence,
$\mathrm{OP}>\mathrm{PT}$ or $\mathrm{PT}<\mathrm{OP}$
Hence, length of tangent from an external point P on a circle with center O is always less than OP.
4. The angle between two tangents to a circle may be 0°.

Solution:

True
Justification:
The angle between two tangents to a circle may be 0° only when both tangent lines coincide or are parallel to each other.

5. If angle between two tangents drawn from a point P to a circle of radius a and centre O is 90°, then $O P=\mathbf{a} \sqrt{ } 2$.

Solution:

Tangent is always perpendicular to the radius at the point of contact.
Hence, $\angle \mathrm{OAP}=90$
If 2 tangents are drawn from an external point, then they are equally inclined to the line segment joining the centre to that point.
Consider the following figure,

Therefore, $\angle \mathrm{OPA}=12 \angle \mathrm{APB}=12 \times 60^{\circ}=30^{\circ}$
Using angle sum property of triangle in $\triangle \mathrm{AOP}$,
$\angle \mathrm{AOP}+\angle \mathrm{OAP}+\angle \mathrm{OPA}=180^{\circ}$
$\angle \mathrm{AOP}+90^{\circ}+30^{\circ}=180^{\circ}$
$\angle A O P=60^{\circ}$
So, in $\triangle \mathrm{AOP}$

$$
\begin{aligned}
& \tan (\angle \mathrm{AOP})=\mathrm{AP} / \mathrm{OA} \\
& \sqrt{ } 3=\mathrm{AP} / \mathrm{a}
\end{aligned}
$$

Therefore, $A P=\sqrt{ } 3 a$
Hence, proved

EXERCISE 9.3

1. Out of the two concentric circles, the radius of the outer circle is 5 cm and the chord AC of length 8 cm is a tangent to the inner circle. Find the radius of the inner circle.

Solution:

From the figure,
Chord $\mathrm{AB}=8 \mathrm{~cm}$
OC is perpendicular to the chord AB
$\mathrm{AC}=\mathrm{CB}=4 \mathrm{~cm}$
In right triangle OCA
$\mathrm{OC}^{2}+\mathrm{CA}^{2}=\mathrm{OA}^{2}$
$\mathrm{OC}^{2}=5^{2}-4^{2}=25-16=9$
$\mathrm{OC}=3 \mathrm{~cm}$
2. Two tangents $P Q$ and $P R$ are drawn from an external point to a circle with centre O. Prove that QORP is a cyclic quadrilateral. Solution:

We know that,
Radius \perp Tangent $=\mathrm{OR} \perp \mathrm{PR}$
i.e., $\angle \mathrm{ORP}=90^{\circ}$

Likewise,
Radius \perp Tangent $=\mathrm{OQ} \perp \mathrm{PQ}$
$\angle \mathrm{OQP}=90^{\circ}$
In quadrilateral ORPQ,
Sum of all interior angles $=360^{\circ}$
$\angle \mathrm{ORP}+\angle \mathrm{RPQ}+\angle \mathrm{PQO}+\angle \mathrm{QOR}=360^{\circ}$
$90^{\circ}+\angle \mathrm{RPQ}+90^{\circ}+\angle \mathrm{QOR}=360^{\circ}$
Hence, $\angle \mathrm{O}+\angle \mathrm{P}=180^{\circ}$
PROQ is a cyclic quadrilateral.
3. If from an external point B of a circle with centre O, two tangents $B C$ and $B D$ are drawn such that angle $D B C=120^{\circ}$, prove that $B C+B D=B O$, i.e., $B O=2 B C$.
Solution:
According to the question,
By RHS rule,
$\triangle \mathrm{OBC}$ and $\triangle \mathrm{OBD}$ are congruent

$\angle \mathrm{OBC}$ and $\angle \mathrm{OBD}$ are equal
Therefore,
$\angle \mathrm{OBC}=\angle \mathrm{OBD}=60^{\circ}$
In triangle OBC ,
$\cos 60^{\circ}=\mathrm{BC} / \mathrm{OB}$
$1 / 2=\mathrm{BC} / \mathrm{OB}$
$\mathrm{OB}=2 \mathrm{BC}$
Hence proved
4. Prove that the centre of a circle touching two intersecting lines lies on the angle bisector of the lines.

Solution:

Let the lines be l_{1} and l_{2}.
Assume that O touches 1_{1} and 1_{2} at M and N ,
We get,
$\mathrm{OM}=\mathrm{ON}$ (Radius of the circle)
Therefore,
From the centre "O" of the circle, it has equal distance from $l_{1} \& l_{2}$.
In \triangle OPM \& OPN,
$\mathrm{OM}=\mathrm{ON}$ (Radius of the circle)
$\angle \mathrm{OMP}=\angle \mathrm{ONP}$ (As, Radius is perpendicular to its tangent)
$\mathrm{OP}=\mathrm{OP}($ Common sides $)$
Therefore,
$\Delta \mathrm{OPM}=\Delta \mathrm{OPN}$ (SSS congruence rule)
By C.P.C.T,
$\angle \mathrm{MPO}=\angle \mathrm{NPO}$
So, 1 bisects $\angle \mathrm{MPN}$.
Therefore, O lies on the bisector of the angle between $l_{1} \& l_{2}$.
Hence, we prove that the centre of a circle touching two intersecting lines lies on the angle bisector of the lines.
5. In Fig. 9.13, AB and CD are common tangents to two circles of unequal radii. Prove that $\mathrm{AB}=$ CD.

Fig. 9.13

Solution:

According to the question, $\mathrm{AB}=\mathrm{CD}$

A

Construction: Produce AB and CD , to intersect at P .
Proof:
Consider the circle with greater radius.
Tangents drawn from an external point to a circle are equal
$\mathrm{AP}=\mathrm{CP} \ldots$ (1)
Also,
Consider the circle with smaller radius.
Tangents drawn from an external point to a circle are equal $\mathrm{BP}=\mathrm{BD} . .$. (2)
Subtract Equation (2) from (1). We Get
$\mathrm{AP}-\mathrm{BP}=\mathrm{CP}-\mathrm{BD}$
$A B=C D$
Hence Proved.

EXERCISE 9.4

1. If a hexagon $A B C D E F$ circumscribe a circle, prove that $A B+C D+E F=B C+D E+F A$. Solution:

According to the question,
A Hexagon ABCDEF circumscribe a circle.
To prove:
$\mathrm{AB}+\mathrm{CD}+\mathrm{EF}=\mathrm{BC}+\mathrm{DE}+\mathrm{FA}$
Proof:
Tangents drawn from an external point to a circle are equal.
Hence, we have
AM $=$ RA \ldots eq 1 [tangents from point A]
$\mathrm{BM}=\mathrm{BN} \ldots$ eq $2[$ tangents from point B$]$
$\mathrm{CO}=\mathrm{NC} \ldots$ eq 3 [tangents from point C$]$
$\mathrm{OD}=\mathrm{DP} \ldots$ eq 4 [tangents from point D]
$\mathrm{EQ}=\mathrm{PE} \ldots$ eq 5 [tangents from point E$]$
$\mathrm{QF}=\mathrm{FR} \ldots$ eq 6 [tangents from point F$]$
[eq 1]+[eq 2]+[eq 3]+[eq 4]+[eq 5]+[eq 6]
$\mathrm{AM}+\mathrm{BM}+\mathrm{CO}+\mathrm{OD}+\mathrm{EQ}+\mathrm{QF}=\mathrm{RA}+\mathrm{BN}+\mathrm{NC}+\mathrm{DP}+\mathrm{PE}+\mathrm{FR}$
On rearranging, we get,
$(\mathrm{AM}+\mathrm{BM})+(\mathrm{CO}+\mathrm{OD})+(\mathrm{EQ}+\mathrm{QF})=(\mathrm{BN}+\mathrm{NC})+(\mathrm{DP}+\mathrm{PE})+(\mathrm{FR}+\mathrm{RA})$
$\mathrm{AB}+\mathrm{CD}+\mathrm{EF}=\mathrm{BC}+\mathrm{DE}+\mathrm{FA}$
Hence Proved!
2. Let s denote the semi-perimeter of a triangle ABC in which $\mathrm{BC}=a, \mathrm{CA}=b, \mathrm{AB}=c$. If a circle touches the sides $B C, C A, A B$ at D, E, F, respectively, prove that $B D=s-b$.
Solution:

According to the question,
A triangle ABC with $\mathrm{BC}=\mathrm{a}, \mathrm{CA}=\mathrm{b}$ and $\mathrm{AB}=\mathrm{c}$. Also, a circle is inscribed which touches the sides BC, CA and AB at D, E and F respectively and s is semi- perimeter of the triangle
To Prove: BD = s - b
Proof:
According to the question,
We have,
Semi Perimeter $=\mathrm{s}$
Perimeter $=2 \mathrm{~s}$
$2 \mathrm{~s}=\mathrm{AB}+\mathrm{BC}+\mathrm{AC}[1]$
As we know,
Tangents drawn from an external point to a circle are equal
So we have
$\mathrm{AF}=\mathrm{AE}[2]$ [Tangents from point A$]$
$\mathrm{BF}=\mathrm{BD}[3]$ [Tangents From point B]
$\mathrm{CD}=\mathrm{CE}[4]$ [Tangents From point C]
Adding [2] [3] and [4]
$\mathrm{AF}+\mathrm{BF}+\mathrm{CD}=\mathrm{AE}+\mathrm{BD}+\mathrm{CE}$
$A B+C D=A C+B D$
Adding BD both side
$A B+C D+B D=A C+B D+B D$
$A B+B C-A C=2 B D$
$\mathrm{AB}+\mathrm{BC}+\mathrm{AC}-\mathrm{AC}-\mathrm{AC}=2 \mathrm{BD}$
$2 \mathrm{~s}-2 \mathrm{AC}=2 \mathrm{BD}[$ From 1]
$2 \mathrm{BD}=2 \mathrm{~s}-2 \mathrm{~b}[\mathrm{as} \mathrm{AC}=\mathrm{b}]$
$\mathrm{BD}=\mathrm{s}-\mathrm{b}$
Hence Proved.
3. From an external point P, two tangents, $P A$ and $P B$ are drawn to a circle with centre O. At one point E on the circle tangent is drawn which intersects $P A$ and $P B$ at C and D, respectively. If $P A$ $=10 \mathrm{~cm}$, find the perimeter of the triangle PCD.

Solution:

According to the question,
From an external point P , two tangents, PA and PB are drawn to a circle with center O .
At a point E on the circle tangent is drawn which intersects $P A$ and $P B$ at C and D, respectively. And $\mathrm{PA}=10 \mathrm{~cm}$
To Find : Perimeter of $\triangle P C D$
As we know that, Tangents drawn from an external point to a circle are equal.
So we have
$\mathrm{AC}=\mathrm{CE}[1]$ [Tangents from point C]
$\mathrm{ED}=\mathrm{DB}$ [2] [Tangents from point D]
Now Perimeter of Triangle PCD
$=\mathrm{PC}+\mathrm{CD}+\mathrm{DP}$
$=P C+C E+E D+D P$
$=\mathrm{PC}+\mathrm{AC}+\mathrm{DB}+\mathrm{DP}[$ From 1 and 2]
$=\mathrm{PA}+\mathrm{PB}$
Now,
$\mathrm{PA}=\mathrm{PB}=10 \mathrm{~cm}$ as tangents drawn from an external point to a circle are equal
So we have
Perimeter $=\mathrm{PA}+\mathrm{PB}=10+10=20 \mathrm{~cm}$
4. If $A B$ is a chord of a circle with centre O, $A O C$ is a diameter and $A T$ is the tangent at A as shown in Fig. 9.17. Prove that $\angle B A T=\angle A C B$

Fig. 9.17

Solution:

According to the question,
A circle with center O and $A C$ as a diameter and $A B$ and $B C$ as two chords also $A T$ is a tangent at point A
To Prove: $\angle \mathrm{BAT}=\angle \mathrm{ACB}$
Proof:
$\angle \mathrm{ABC}=90^{\circ}$ [Angle in a semicircle is a right angle]
In $\triangle \mathrm{ABC}$ By angle sum property of triangle
$\angle \mathrm{ABC}+\angle \mathrm{BAC}+\angle \mathrm{ACB}=180^{\circ}$
$\angle \mathrm{ACB}+90^{\circ}=180^{\circ}-\angle \mathrm{BAC}$
$\angle \mathrm{ACB}=90-\angle \mathrm{BAC}[1]$
Now,
$\mathrm{OA} \perp \mathrm{AT}$ [Tangent at a point on the circle is perpendicular to the radius through point of contact]
$\angle \mathrm{OAT}=\angle \mathrm{CAT}=90^{\circ}$
$\angle \mathrm{BAC}+\angle \mathrm{BAT}=90^{\circ}$
$\angle \mathrm{BAT}=90^{\circ}-\angle \mathrm{BAC}[2]$
From [1] and [2]
$\angle \mathrm{BAT}=\angle \mathrm{ACB}$ [Proved]
5. Two circles with centres O and O^{\prime} of radii 3 cm and 4 cm , respectively intersect at two points P and Q such that $O P$ and $O^{\prime} P$ are tangents to the two circles. Find the length of the common chord PQ.
Solution:

According to the question,
Two circles with centers O and O^{\prime} of radii 3 cm and 4 cm , respectively intersect at two points P and Q , such that OP and $\mathrm{O}^{\prime} \mathrm{P}$ are tangents to the two circles and PQ is a common chord.
To Find: Length of common chord PQ
$\angle O P O^{\prime}=90^{\circ}$ [Tangent at a point on the circle is perpendicular to the radius through point of contact]
So OPO is a right-angled triangle at P
Using Pythagoras in $\triangle \mathrm{OPO}^{\prime}$, we have
$\left(\mathrm{OO}^{\prime}\right)^{2}=\left(\mathrm{O}^{\prime} \mathrm{P}\right)^{2}+(\mathrm{OP})^{2}$
$\left(\mathrm{OO}^{\prime}\right)^{2}=(4)^{2}+(3)^{2}$
$\left(\mathrm{OO}^{\prime}\right)^{2}=25$
$\mathrm{OO}^{\prime}=5 \mathrm{~cm}$
Let $\mathrm{ON}=\mathrm{x} \mathrm{cm}$ and $\mathrm{NO}^{\prime}=5-\mathrm{x} \mathrm{cm}$
In right angled triangle ONP
$(\mathrm{ON})^{2}+(\mathrm{PN})^{2}=(\mathrm{OP})^{2}$
$\mathrm{x}^{2}+(\mathrm{PN})^{2}=(3)^{2}$
$(\mathrm{PN})^{2}=9-\mathrm{x}^{2}[1]$
In right angled triangle $\mathrm{O}^{\prime} \mathrm{NP}$
$\left(\mathrm{O}^{\prime} \mathrm{N}\right)^{2}+(\mathrm{PN})^{2}=\left(\mathrm{O}^{\prime} \mathrm{P}\right)^{2}$
$(5-\mathrm{x})^{2}+(\mathrm{PN})^{2}=(4)^{2}$
$25-10 \mathrm{x}+\mathrm{x}^{2}+(\mathrm{PN})^{2}=16$
$(\mathrm{PN})^{2}=-\mathrm{x}^{2}+10 \mathrm{x}-9[2]$
From [1] and [2]
$9-x^{2}=-x^{2}+10 x-9$
$10 x=18$
$\mathrm{x}=1.8$
From (1) we have
$(\mathrm{PN})^{2}=9-(1.8)^{2}$

$$
\begin{aligned}
& =9-3.24=5.76 \\
& \mathrm{PN}=2.4 \mathrm{~cm} \\
& \mathrm{PQ}=2 \mathrm{PN}=2(2.4)=4.8 \mathrm{~cm}
\end{aligned}
$$

6. In a right triangle ABC in which $\angle \mathrm{B}=90^{\circ}$, a circle is drawn with AB as diameter intersecting the hypotenuse $A C$ and P. Prove that the tangent to the circle at P bisects BC.

Solution:

According to the question,
In a right angle $\triangle \mathrm{ABC}$ is which $\angle \mathrm{B}=90^{\circ}$, a circle is drawn with AB as diameter intersecting the hypotenuse AC at P . Also PQ is a tangent at P
To Prove: PQ bisects BC i.e. $\mathrm{BQ}=\mathrm{QC}$
Proof:
$\angle \mathrm{APB}=90^{\circ}$ [Angle in a semicircle is a right-angle]
$\angle \mathrm{BPC}=90^{\circ}$ [Linear Pair]
$\angle 3+\angle 4=90$ [1]
Now, $\angle \mathrm{ABC}=90^{\circ}$
So in $\triangle \mathrm{ABC}$
$\angle \mathrm{ABC}+\angle \mathrm{BAC}+\angle \mathrm{ACB}=180^{\circ}$
$90+\angle 1+\angle 5=180$
$\angle 1+\angle 5=90$ [2]
Now,
$\angle 1=\angle 3$ [angle between tangent and the chord equals angle made by the chord in alternate segment]
Using this in [2] we have
$\angle 3+\angle 5=90$ [3]
From [1] and [3] we have
$\angle 3+\angle 4=\angle 3+\angle 5$
$\angle 4=\angle 5$
$\mathrm{QC}=\mathrm{PQ}$ [Sides opposite to equal angles are equal]

But Also $\mathrm{PQ}=\mathrm{BQ}$ [Tangents drawn from an external point to a circle are equal]
So, $\mathrm{BQ}=\mathrm{QC}$
i.e. PQ bisects BC .
7. In Fig. 9.18, tangents $P Q$ and $P R$ are drawn to a circle such that $\angle R P Q=30^{\circ}$. A chord $R S$ is drawn parallel to the tangent $P Q$. Find the \angle RQS.
[Hint: Draw a line through Q and perpendicular to QP.]

Fig. 9.18
Solution:

According to the question,
Tangents PQ and $P R$ are drawn to a circle such that $\angle R P Q=30^{\circ}$. A chord $R S$ is drawn parallel to the tangent PQ.
To Find : $\angle \mathrm{RQS}$
$\mathrm{PQ}=\mathrm{PR}$ [Tangents drawn from an external point to a circle are equal]
$\angle \mathrm{PRQ}=\angle \mathrm{PQR}$ [Angles opposite to equal sides are equal] [1]
In $\triangle P Q R$
$\angle \mathrm{PRQ}+\angle \mathrm{PQR}+\angle \mathrm{QPR}=180^{\circ}$
$\angle \mathrm{PQR}+\angle \mathrm{PQR}+\angle \mathrm{QPR}=180^{\circ}[$ Using 1]
$2 \angle \mathrm{PQR}+\angle \mathrm{RPQ}=180^{\circ}$
$2 \angle \mathrm{PQR}+30=180$
$2 \angle \mathrm{PQR}=150$
$\angle \mathrm{PQR}=75^{\circ}$
$\angle \mathrm{QRS}=\angle \mathrm{PQR}=75^{\circ}$ [Alternate interior angles]
$\angle \mathrm{QSR}=\angle \mathrm{PQR}=75^{\circ}$ [angle between tangent and the chord equals angle made by the chord in alternate segment]
Now In \triangle RQS
$\angle \mathrm{RQS}+\angle \mathrm{QRS}+\angle \mathrm{QSR}=180$
$\angle \mathrm{RQS}+75+75=180$
$\angle \mathrm{RQS}=30^{\circ}$

