

Exercise 14

Page No: 516

Question 1: Using a protector, draw each of the following angles. (i) 60° (ii) 130° (iii) 300° (iv) 430°

Solution:

(i)

Step 1: Draw a line AB.

Step 2: Place the baseline of the protractor along BA and make sure centre of the protractor lie at point B.

Step 3: Find 60⁰ on the scale of the protractor and mark a small dot at the edge and named as P as shown below:

Step 4: Join P to B with a ruler to form the second arm, BP, of the angle.

P 60° B A

Mark the angle with a small arc as shown below:

Step 1: Draw a line AB.

Step 2: Place the baseline of the protractor along BA and make sure centre of the protractor lie at point B.

Step 3: Find 130⁰ on the scale of the protractor and mark a small dot at the edge and named as C as shown below:

Step 4: Join C to B with a ruler to form the second arm, BC, of the angle.

Mark the angle with a small arc as shown below:

Step 2: Place the baseline of the protractor along BA and make sure centre of the protractor lie at point B.

Step 3: Find 300⁰ on the scale of the protractor and mark a small dot at the edge and named as C as shown below:

Step 4: Join C to B with a ruler to form the second arm, BC, of the angle.

Mark the angle with a small arc as shown below:

(iv) 430⁰

We know, adding or subtracting 360⁰ from a particular angle does not changes its position. Therefore, given angle can also be written as:

 $430^{0} - 360^{0} = 70^{0}$

Now, we have to draw an angle for 70°

Step 1: Draw a line AB.

Step 2: Place the baseline of the protractor along BA and make sure centre of the protractor lie at point B.

Step 3: Find 430⁰ on the scale of the protractor and mark a small dot at the edge and named as C as shown below:

Step 4: Join C to B with a ruler to form the second arm, BC, of the angle.

Mark the angle with a small arc as shown below:

Question 2: Express each of the following angles in radians. (i) 36° (ii) 120° (iii) 225° (iv) 330°

(v) 400° (vi) 7° 30' (vii) -270° (viii) -(22° 30')

Solution:

We know, Angle in radians = Angle in degrees x $\pi/180^{\circ}$

(i) 36⁰

Angle in radians = $36^{\circ} \times \pi/180^{\circ}$

= π/5

(ii) 120⁰

Angle in radians = $120^{\circ} \times \pi/180^{\circ}$

= 2π/3

(iii) 225⁰

Angle in radians = $225^{\circ} \times \pi/180^{\circ}$

= 5π/4

(iv) 330⁰

```
Angle in radians = 330^{\circ} \times \pi/180^{\circ}
```

= 11π/6

(v) 400⁰

```
Angle in radians = 400^{\circ} \times \pi/180^{\circ}
```

```
= 20π/9
```

(vi) 7º 30'

Convert 30' into degrees = (angle in minutes)/60 = (30/60) degrees = 0.5 degrees

Total angle = (7 + 0.5) degrees = 7.5 degrees or 7.5^o

Angle in radians = $7.5^{\circ} \times \pi/180^{\circ}$

= π/24


```
(vii) -270<sup>0</sup>
```

Angle in radians = $-270^{\circ} \times \pi/180^{\circ}$

= -3π/2

(viii) –(22⁰ 30')

Convert 30' into degrees = (angle in minutes)/60 = (30/60) degrees = 0.5 degrees

Total angle = (22 + 0.5) degrees = 22.5 degrees or 22.5^o

Angle in radians = $-22.5^{\circ} \times \pi/180^{\circ}$

= -π/8

Question 3: Express each of the following angles in degrees.

(i) $\left(\frac{5\pi}{12}\right)^c$ (ii) $-\left(\frac{18\pi}{5}\right)^c$

(iii)
$$\left(\frac{5}{6}\right)^{5}$$

Solution:

We know that.

Angle in degrees = Angle in radians $\times \frac{180}{\pi}$

- (i) Angle in degrees = $5\pi/12 \times 180/\pi = 75$
- (ii) Angle in degrees = $-18\pi/5 \times 180/\pi = -648$
- (iii) Angle in degrees = $5/6 \times 180/\pi = 47.7272^{\circ}$

Write Angle in degrees, minutes and second:

We know,

The angle in minutes = Decimal of angle in radian x 60'

The angle in seconds = Decimal of angle in minutes x 60''

Therefore, 0.7272⁰ = 0.7272 x 60' = 43.632'

Angle in seconds = 0.632 x 60" = 37.92" or 38"

Final angle = $47^{\circ} 43' 38''$

(iv) Angle in degrees = $-4 \times 180/\pi = -229.0909^{\circ}$

Write Angle in minutes:

We know, The angle in minutes = Decimal of angle in radian x 60'

The angle in seconds = Decimal of angle in minutes x 60"

Therefore, 0.0909⁰ = 0.0909 x 60' = 5.4545'

Angle in seconds = 0.4545 x 60" = 27.27"

Final angle = $-(229^{\circ} 5' 27'')$

Question 4: The angles of a triangle are in AP, and the greatest angle is double the least. Find all the angles in degrees and radians.

Solution: Let a - d, a, a + d be the three angles of the triangle that form AP.

Since greatest angle is double the least. (given)

So, a + d = 2(a - d) or a + d = 2a - 2d or a = 3d(1)

Again, by angle sum property, we know Sum of all the angles = 180 degreesSo, $(a - d) + a + (a + d) = 180^{\circ}$ or $3a = 180^{\circ}$ or $a = 60^{\circ}$ (2)

From (1) and (2), we get

3d = 60⁰ or d = 20⁰

Now, the angles are, $a - d = 60^{0} - 20^{0} = 40^{0}$ $a = 60^{0}$ $a + d = 60^{0} + 20^{0} = 80^{0}$.

Therefore the required angles are 40° , 60° and 80° .

Question 5: The difference between the two acute angles of a right triangle is $(\pi/5)^{c}$. Find these angles in radians and degrees.

Solution:

Angle in degree = $\pi/5 \times 180/\pi = 36^{\circ}$

Let x and y are two acute angles of a right triangle.

So, x - y= 36°(1)

Also we know, $x + y = 90^{\circ}$ (2)

Solving (1) and (2), we get

2x= 126°

or x = 63°

Form (2), 63° + y = 90°

or y = 27°

Therefore, two acute angles are 63° and 27°.

Represent angle into radian:

We know, Angle in radians = Angle in degrees x $\pi/180^{\circ}$

Angle in radians = $63^{\circ} \times \pi/180^{\circ}$

= 7π/20

And Angle in radians = $27^{\circ} \times \pi/180^{\circ}$

= 3π/20

Question 6: Find the radius of a circle in which a central angle of 45° intercepts an arc of length 33 cm. (Take $\pi = 22/7$)

Solution: We know, Central angle (θ) = (length arc)/radius(1)

Convert angle in radian: Angle in radians = Angle in degrees $x \pi/180^{\circ} = 45^{\circ} x \pi/180^{\circ} = \pi/4$

From (1), Radius = (length arc)/Central angle

= 33/(π/4)

= 132 x 7/22 = 42

Therefore radius is 42 cm.