

# Exercise 30A

# Page No: 926

Find the mean deviation about the mean for the following data: (Question 1 to Question 3) Formula used:

Mean Deviation about the mean

$$M.D.(\overline{x}) = \frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{n}$$

Where  $\overline{\mathbf{x}}$  = mean

Question 1: Find the mean deviation about the mean for 7, 8, 4, 13, 9, 5, 16, 18

## Solution:

Step 1: Find the mean

$$\overline{\mathbf{x}} = \frac{7+8+4+13+9+5+16+18}{8} = \frac{80}{8} = 10$$

Step 2: Mean deviation using formula

M.D.
$$(\bar{x}) = \frac{\sum_{i=1}^{8} |x_i - \bar{x}|}{8}$$

$$=\frac{3+2+6+3+1+5+6+8}{8}=\frac{34}{8}=4.25$$

Question 2: Find the mean deviation about the mean for 39, 72, 48, 41, 43, 55, 60, 45, 54, 43.

## Solution:

Step 1: Find the mean  $\bar{x} = \frac{39 + 72 + 48 + 41 + 43 + 55 + 60 + 45 + 54 + 43}{10} = \frac{500}{10} = 50$ 

Step 2: Mean deviation using formula



M.D.
$$(\bar{x}) = \frac{\sum_{i=1}^{10} |x_i - \bar{x}|}{10}$$

$$=\frac{11+22+2+9+7+5+10+5+4+7}{10}=\frac{82}{10}=8.2$$

#### Question 3: Find the mean deviation about the mean for 17, 20, 12, 13, 15, 16, 12, 18, 15, 19, 12, 11.

#### Solution:

Step 1: Find the mean

$$\bar{\mathbf{x}} = \frac{17 + 20 + 12 + 13 + 15 + 16 + 12 + 18 + 15 + 19 + 12 + 11}{12}$$
Step 2: Mean deviation using formula
$$\sum_{i=1}^{12} |\mathbf{x}_i - \bar{\mathbf{x}}|$$

Step 2: Mean deviation using formula

M.D.
$$(\bar{x}) = \frac{\sum_{i=1}^{12} |x_i - \bar{x}|}{12}$$

$$=\frac{2+5+3+2+0+1+3+3+0+4+3+4}{12}=\frac{30}{12}=2.5$$

Find the mean deviation about the median for the following data: (Question 4 to Question 7) Formula used:

Mean Deviation about the median

$$M.D.(M) = \frac{\sum_{i=1}^{N} |x_i - M|}{n}$$

Where M= median

#### Question 4: Find the mean deviation about the median for 12, 5, 14, 6, 11, 13, 17, 8, 10.

#### Solution:

Step 1: Find the median Arranging the data into ascending order:

5, 6, 8, 10, 11, 12, 13, 14, 17



Total number of observations = 9, which is odd.

$$Median(M) = \left(\frac{9+1}{2}\right)^{th}$$

or  $5^{th}$  observation = 11

Step 2: Mean deviation using formula

M.D.(M) = 
$$\frac{\sum_{i=1}^{9} |x_i - M|}{9}$$

 $=\frac{6+5+3+1+0+1+2+3+6}{9}=\frac{27}{9}=3$ 

Question 5: Find the mean deviation about the median for 4, 15, 9, 7, 19, 13, 6, 21, 8, 25, 11.

### Solution:

Step 1: Find the median Arranging the data into ascending order:

4, 6, 7, 8, 9, 11, 13, 15, 19, 21, 25

Total number of observations = 11, which is odd.

 $Median(M) = \left(\frac{11+1}{2}\right)^{th}$ 

or 6<sup>th</sup> observation = 11

Step 2: Mean deviation using formula

$$M.D.(M) = \frac{\sum_{i=1}^{11} |x_i - M|}{11}$$

$$=\frac{7+5+4+3+2+0+2+4+8+10+14}{11}=\frac{59}{11}=5.3$$



Question 6: Find the mean deviation about the median for 34, 23, 46, 37, 40, 28, 32, 50, 35, 44.

#### Solution:

Step 1: Find the median Arranging the data into ascending order:

23, 28, 32, 34, 35, 37, 40, 44, 46, 50

Total number of observations = 10, which is Even.

$$Median(M) = \left(\frac{5^{th} \text{ observation} + 6^{th} \text{ observation}}{2}\right) = \frac{35 + 37}{2} = 36$$
  
Step 2: Mean deviation using formula

Step 2: Mean deviation using formula

M.D.(M) = 
$$\frac{\sum_{i=1}^{10} |x_i - M|}{10}$$

$$=\frac{13+8+4+2+1+1+4+8+10+14}{10}=\frac{65}{10}=6.5$$

Question 7: Find the mean deviation about the median for 70, 34, 42, 78, 65, 45, 54, 48, 67, 50, 56, 63.

Solution:

Step 1: Find the median Arranging the data into ascending order:

34, 42, 45, 48, 50, 54, 56, 63, 65, 67, 70, 78

Total number of observations = 12, which is Even.

$$Median(M) = \left(\frac{6^{th} \text{ observation} + 7^{th} \text{ observation}}{2}\right) = \frac{54+56}{2} = 55$$

Step 2: Mean deviation using formula



$$M.D.(M) = \frac{\sum_{i=1}^{12} |x_i - M|}{12}$$

$$=\frac{21+13+10+7+5+1+1+8+10+12+15+23}{12}=\frac{126}{12}=10.5$$

Find the mean deviation about the mean for the following data: (Question 8 to Question 10)

Question 8: Find the mean deviation about the mean for below data:

| Xi | 6 | 12 | 18 | 24 | 30 | 36 |
|----|---|----|----|----|----|----|
| fi | 5 | 4  | 11 | 6  | 4  | 6  |



**BYJU'S** The Learning App R S Aggarwal Solutions for Class 11 Maths Chapter 30 Statistics

| Mean =         | $\overline{\mathbf{x}} = \frac{\sum_{i=1}^{6} \mathbf{f}_i}{\sum_{i=1}^{6}}$ | $\frac{\mathbf{x}_{i}}{\mathbf{f}_{i}} = \frac{756}{36}$ | = 21                                     |                       |     |
|----------------|------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------|-----------------------|-----|
| x <sub>i</sub> | $f_i$                                                                        | $f_i \; \boldsymbol{x}_i$                                | $ \mathbf{x}_{i}-\overline{\mathbf{x}} $ | $f_i  x_i - \bar{x} $ |     |
| 6              | 5                                                                            | 30                                                       | 15                                       | 75                    |     |
| 12             | 4                                                                            | 48                                                       | 9                                        | 36                    |     |
| 18             | 11                                                                           | 198                                                      | 3                                        | 33                    |     |
| 24             | 6                                                                            | 144                                                      | 3                                        | 18                    | ,,C |
| 30             | 4                                                                            | 120                                                      | 9                                        | 36                    |     |
| 36             | 6                                                                            | 216                                                      | 15                                       | 90                    | U,  |
|                | 36                                                                           | 756                                                      |                                          | 288                   | ain |

Mean Deviation about the mean

$$\bar{\mathbf{x}} = \frac{\sum_{i=1}^{6} f_i |\mathbf{x}_i - \bar{\mathbf{x}}|}{\sum_{i=1}^{6} f_i} = \frac{288}{36} = 8$$

Question 9: Find the mean deviation about the mean for below data:

| Xi | 2 | 5 | 6  | 8 | 10 | 12 |
|----|---|---|----|---|----|----|
| fi | 2 | 8 | 10 | 7 | 8  | 5  |



| Mean =         | $\overline{x} = \frac{\sum_{i=1}^{6} f}{\sum_{i=1}^{6}}$ | $\frac{\mathbf{x}_i}{\mathbf{f}_i} = \frac{300}{40}$ | = 7.5                                    |                            |                   |
|----------------|----------------------------------------------------------|------------------------------------------------------|------------------------------------------|----------------------------|-------------------|
| x <sub>i</sub> | $f_i$                                                    | $f_ix_i$                                             | $ \mathbf{x}_i - \overline{\mathbf{x}} $ | $f_i  x_i - \overline{x} $ |                   |
| 2              | 2                                                        | 4                                                    | 5.5                                      | 11                         |                   |
| 5              | 8                                                        | 40                                                   | 2.5                                      | 20                         |                   |
| 6              | 10                                                       | 60                                                   | 1.5                                      | 15                         |                   |
| 8              | 7                                                        | 56                                                   | 0.5                                      | 3.5                        | 5                 |
| 10             | 8                                                        | 80                                                   | 2.5                                      | 20                         |                   |
| 12             | 5                                                        | 60                                                   | 4.5                                      | 22.5                       | U.P.              |
|                | 40                                                       | 300                                                  |                                          | 92                         | enin <sup>9</sup> |

Mean Deviation about the mean

$$\overline{\mathbf{x}} = \frac{\sum_{i=1}^{6} f_i |\mathbf{x}_i - \overline{\mathbf{x}}|}{\sum_{i=1}^{6} f_i} = \frac{92}{40} = 2.3$$

Question 10: Find the mean deviation about the mean for below data:

| Xi | 3 | 5 | 7  | 9  | 11 | 13 |
|----|---|---|----|----|----|----|
| fi | 6 | 8 | 15 | 25 | 8  | 4  |



| Mean =         | $\overline{\mathbf{x}} = \frac{\sum_{i=1}^{6} \mathbf{x}}{\sum_{i=1}^{6}}$ | $\frac{f_i x_i}{f_i} = \frac{528}{66}$ | = 8                                        |                       |      |
|----------------|----------------------------------------------------------------------------|----------------------------------------|--------------------------------------------|-----------------------|------|
| x <sub>i</sub> | $\mathbf{f}_{\mathbf{i}}$                                                  | $f_i  x_i$                             | $ \mathbf{x}_{i} - \overline{\mathbf{x}} $ | $f_i  x_i - \bar{x} $ |      |
| 3              | 6                                                                          | 18                                     | 5                                          | 30                    |      |
| 5              | 8                                                                          | 40                                     | 3                                          | 24                    |      |
| 7              | 15                                                                         | 105                                    | 1                                          | 15                    |      |
| 9              | 25                                                                         | 225                                    | 1                                          | 25                    | 5    |
| 11             | 8                                                                          | 88                                     | 3                                          | 24                    | 10.  |
| 13             | 4                                                                          | 52                                     | 5                                          | 20                    | 1900 |
|                | 66                                                                         | 528                                    |                                            | 138                   | CILL |

Mean Deviation about the mean

$$\overline{\mathbf{x}} = \frac{\sum_{i=1}^{6} \mathbf{f}_{i} |\mathbf{x}_{i} - \overline{\mathbf{x}}|}{\sum_{i=1}^{6} \mathbf{f}_{i}} = \frac{138}{66} = 2.09$$



# Exercise 30B

# Page No: 935

Question 1: Find the mean, variance and standard deviation for the numbers 4, 6, 10, 12, 7, 8, 13, 12.

# Solution:

Given data: 4, 6, 10, 12, 7, 8, 13, 12

Sum of observations = 4 + 6 + 10 + 12 + 7 + 8 + 13 + 12 = 72

Total number of observation = 8

### Find Mean:

Mean = (Sum of observations) / (Total number of observation)

= 72/8 = 9

Mean = 9

#### Find Variance:

| x <sub>i</sub>                                                              | $\mathbf{x}_{i} - \overline{\mathbf{x}}$ | $(x_i - \bar{x})^2$ |  |  |  |  |
|-----------------------------------------------------------------------------|------------------------------------------|---------------------|--|--|--|--|
| 4                                                                           | 4 - 9 = -5                               | 25                  |  |  |  |  |
| 6                                                                           | 6 - 9 = -3                               | 9                   |  |  |  |  |
| 10                                                                          | 10 - 9 = 1                               | 1                   |  |  |  |  |
| 12                                                                          | 12 - 9 = 3                               | 9                   |  |  |  |  |
| 7                                                                           | 7 - 9 = -2                               | 4                   |  |  |  |  |
| 8                                                                           | 8 - 9 = -1                               | 1                   |  |  |  |  |
| 13                                                                          | 13 - 9 = 4                               | 16                  |  |  |  |  |
| 12                                                                          | 12 - 9 = 3                               | 9                   |  |  |  |  |
|                                                                             |                                          | Sum = 74            |  |  |  |  |
| Variance= $\sigma^2 = \frac{\sum (x_i - \overline{x})^2}{n} = \frac{74}{8}$ |                                          |                     |  |  |  |  |



# Find Standard Deviation:

Standard Deviation (
$$\sigma$$
) =  $\sqrt{Variance}$   
=  $\sqrt{\frac{74}{8}}$   
=  $\sqrt{9.25}$   
= 3.04

Question 2: Find the mean, variance and standard deviation for first six odd natural numbers.

### Solution:

Given data: First six odd natural numbers = 1, 3, 5, 7, 9, 11

Sum of observations = 1 + 3 + 5 + 7 + 9 + 11 = 36

Total number of observation = 6

#### Find Mean:

Mean = (Sum of observations) / (Total number of observation)

= 36/6 = 6

Mean = 6

Find Variance:



| x <sub>i</sub> | $\mathbf{x_i} - \overline{\mathbf{x}}$ | $(x_i - \bar{x})^2$ |
|----------------|----------------------------------------|---------------------|
| 1              | 1 - 6 = -5                             | 25                  |
| 3              | 3 - 6 = -3                             | 9                   |
| 5              | 5 - 6 = -1                             | 1                   |
| 7              | 7 - 6 = 1                              | 1                   |
| 9              | 9 - 6 = 3                              | 9                   |
| 11             | 11 - 6 = 5                             | 25                  |
|                |                                        | Sum = 70            |

Variance = 
$$\sigma^2 = \frac{\sum (x_i - \bar{x})^2}{n} = \frac{70}{6} = 11.67$$

Find Standard Deviation:

Standard Deviation ( $\sigma$ ) =  $\sqrt{Variance}$ =  $\sqrt{11.67}$ = 3.41

Question 3: Using short cut method, find the mean, variance and standard deviation for the data :

| Xi | 4 | 8 | 11 | 17 | 20 | 24 | 32 |
|----|---|---|----|----|----|----|----|
| fi | 3 | 5 | 9  | 5  | 4  | 3  | 1  |



| x <sub>i</sub>   | fi                                      | $\mathbf{x}_{i}\mathbf{f}_{i}$ | $x_i - \overline{x}$<br>( $\overline{x} = 14$ ) | $(x_i - \bar{x})^2$ | $f_i(x_i-\bar{x})^2$                                                     |   |
|------------------|-----------------------------------------|--------------------------------|-------------------------------------------------|---------------------|--------------------------------------------------------------------------|---|
| 4                | 3                                       | 12                             | -10                                             | 100                 | 300                                                                      |   |
| 8                | 5                                       | 40                             | -6                                              | 36                  | 180                                                                      |   |
| 11               | 9                                       | 99                             | -3                                              | 9                   | 81                                                                       |   |
| 17               | 5                                       | 85                             | 3                                               | 9                   | 45                                                                       |   |
| 20               | 4                                       | 80                             | 6                                               | 36                  | 144                                                                      | D |
| 24               | 3                                       | 72                             | 10                                              | 100                 | 300                                                                      |   |
| 32               | 1                                       | 32                             | 18                                              | 324                 | 324                                                                      |   |
|                  | ∑f <sub>i</sub> =30                     | $\sum f_i x_i = 420$           |                                                 |                     | $\begin{array}{l} \sum f_i (x_i - \overline{x})^2 \\ = 1374 \end{array}$ | 3 |
| Mean:<br>Mean (x | $) = \frac{\sum f_i x_i}{\sum f_i}$ 420 |                                | 2                                               | 5.0                 | earn                                                                     | 4 |

### Mean:

Mean  $(\bar{\mathbf{x}}) = \frac{\sum \mathbf{f}_i \mathbf{x}_i}{\sum \mathbf{f}_i}$  $=\frac{420}{30}$ = 14 Variance:

 $\sigma^2 = \frac{\sum f_i (x_i - \overline{x})^2}{N}$  $=\frac{1374}{30}$ = 45.8

**Standard deviation** 

 $\sigma = \sqrt{Variance}$  $=\sqrt{45.8}$ = 6.77



Question 4: Using short cut method, find the mean, variance and standard deviation for the data :

| Xi | 6 | 10 | 14 | 18 | 24 | 28 | 30 |
|----|---|----|----|----|----|----|----|
| fi | 2 | 4  | 7  | 12 | 8  | 4  | 3  |

Solution:

| x <sub>i</sub> | $\mathbf{f}_{\mathbf{i}}$ | $\mathbf{x}_{i}\mathbf{f}_{i}$ | $\mathbf{x_i} - \mathbf{\bar{x}}$<br>( $\mathbf{\bar{x}} = 19$ ) | $(x_i - \bar{x})^2$ | $f_i(x_i-\bar{x})^2$                                                     |    |
|----------------|---------------------------|--------------------------------|------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------|----|
| 6              | 2                         | 12                             | -13                                                              | 169                 | 338                                                                      |    |
| 10             | 4                         | 40                             | -9                                                               | 81                  | 324                                                                      |    |
| 14             | 7                         | 98                             | -5                                                               | 25                  | 175                                                                      | 2  |
| 18             | 12                        | 216                            | -1                                                               | 1                   | 12                                                                       | PS |
| 24             | 8                         | 192                            | 5                                                                | 25                  | 200                                                                      | 3  |
| 28             | 4                         | 112                            | 9                                                                | 81                  | 324                                                                      |    |
| 30             | 3                         | 90                             | 11                                                               | 121                 | 363                                                                      |    |
|                | ∑f <sub>i</sub> =40       | $\sum_{i=760}^{i} f_i x_i$     |                                                                  |                     | $\begin{array}{l} \sum f_i (x_i - \overline{x})^2 \\ = 1736 \end{array}$ |    |

#### Mean:

Mean  $(\overline{x}) = \frac{\sum f_i x_i}{\sum f_i}$ =  $\frac{760}{40}$ = 19

Variance:

$$\sigma^2 = \frac{\sum f_i (x_i - \overline{x})^2}{N}$$
$$= \frac{1736}{40}$$
$$= 43.4$$



# **Standard deviation:**

$$\sigma = \sqrt{\text{Variance}}$$
$$= \sqrt{43.4}$$
$$= 6.59$$

Question 5: Using short cut method, find the mean, variance and standard deviation for the data :

| Xi | 10 | 15 | 18 | 20 | 25 |
|----|----|----|----|----|----|
| fi | 3  | 2  | 5  | 8  | 2  |

| Solution:      |                   |                                        |                                                                  |                     |                                                                         |     |
|----------------|-------------------|----------------------------------------|------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------|-----|
| x <sub>i</sub> | $\mathbf{f}_{i}$  | $x_{if_{i}}$                           | $\mathbf{x_i} - \mathbf{\bar{x}}$<br>( $\mathbf{\bar{x}}$ =19.5) | $(x_i - \bar{x})^2$ | $f_i(x_i-\bar{x})^2$                                                    | 289 |
| 10             | 3                 | 30                                     | -9.5                                                             | 90.25               | 270.75                                                                  | 3   |
| 15             | 2                 | 30                                     | -4.5                                                             | 20.25               | 40.5                                                                    |     |
| 18             | 5                 | 90                                     | -1.5                                                             | 2.25                | 11.25                                                                   |     |
| 20             | 8                 | 160                                    | 0.5                                                              | 0.25                | 2                                                                       |     |
| 25             | 2                 | 50                                     | 5.5                                                              | 30.25               | 60.5                                                                    |     |
|                | $\Sigma f_i = 20$ | ∑f <sub>i</sub> x <sub>i</sub><br>=390 |                                                                  |                     | $\begin{array}{l} \sum f_i (x_i - \overline{x})^2 \\ = 385 \end{array}$ |     |

Mean:

Mean  $(\bar{x}) = \frac{\sum f_i x_i}{\sum f_i}$  $=\frac{390}{20}$ = 19.5



Variance:

$$\sigma^2 = \frac{\sum f_i (x_i - \overline{x})^2}{N}$$
$$= \frac{385}{20}$$
$$= 19.25$$

**Standard deviation:** 

$$\sigma = \sqrt{\text{Variance}}$$
$$= \sqrt{19.25}$$
$$= 4.39$$

Question 6: Using short cut method, find the mean, variance and standard deviation for the data :

| Xi | 92 | 93 | 97 | 98 | 102 | 104 | 109 |
|----|----|----|----|----|-----|-----|-----|
| fi | 3  | 2  | 3  | 2  | 6   | 3   | 3   |

Solution:

| xi  | $\mathbf{f}_{\mathbf{i}}$ | $\mathbf{x}_{i}\mathbf{f}_{i}$          | $\mathbf{x_i} - \mathbf{\bar{x}}$<br>( $\mathbf{\bar{x}}$ =100) | $(\mathbf{x_i} - \bar{\mathbf{x}})^2$ | $f_i(x_i-\bar{x})^2$                                                    |
|-----|---------------------------|-----------------------------------------|-----------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------|
| 92  | 3                         | 276                                     | -8                                                              | 64                                    | 192                                                                     |
| 93  | 2                         | 186                                     | -7                                                              | 49                                    | 98                                                                      |
| 97  | 3                         | 291                                     | -3                                                              | 9                                     | 27                                                                      |
| 98  | 2                         | 196                                     | -2                                                              | 4                                     | 8                                                                       |
| 102 | 6                         | 612                                     | 2                                                               | 4                                     | 24                                                                      |
| 104 | 3                         | 312                                     | 4                                                               | 16                                    | 48                                                                      |
| 109 | 3                         | 327                                     | 9                                                               | 81                                    | 243                                                                     |
|     | ∑f <sub>i</sub> = 22      | ∑f <sub>i</sub> x <sub>i</sub><br>=2200 |                                                                 |                                       | $\begin{array}{l} \sum f_i (x_i - \overline{x})^2 \\ = 640 \end{array}$ |



Mean:

Mean 
$$(\overline{x}) = \frac{\sum f_i x_i}{\sum f_i}$$
  
=  $\frac{2200}{22}$   
= 100

Variance:

$$\sigma^{2} = \frac{\sum f_{i}(x_{i} - \overline{x})^{2}}{N}$$
$$= \frac{640}{22}$$
$$= 29.09$$

Standard deviation:

$$\sigma = \sqrt{\text{Variance}}$$
$$= \sqrt{29.09}$$
$$= 5.39$$



# Exercise 30C

# Page No: 941

Question 1: If the standard deviation of the numbers 2, 3, 2x, 11 is 3.5, calculate the possible values of x.

### Solution:

Standard Deviation ( $\sigma$ ) = 3.5

Sum of observations: 2 + 3 + 2x + 11 = 16 + 2x

Total number of observations = 4

| lotal nu       | imber of observations = 4                |                         |       |
|----------------|------------------------------------------|-------------------------|-------|
| Mean =         | (16+2x)/4 = (8+x)/2                      |                         |       |
| x <sub>i</sub> | $\mathbf{x_i} - \bar{\mathbf{x}}$        | $(x_i - \bar{x})^2$     | D Pbr |
| 2              | $2 - \frac{8 + x}{2} = \frac{-4 - x}{2}$ | $\frac{16+8x+x^2}{4}$   | mins  |
| 3              | $3 - \frac{8 + x}{2} = \frac{-2 - x}{2}$ | $\frac{4+4x+x^2}{4}$    | 0     |
| 2x             | $2x - \frac{8+x}{2} = \frac{3x-8}{2}$    | $\frac{64-48x+9x^2}{4}$ |       |
| 11             | $11 - \frac{8+x}{2} = \frac{14-x}{2}$    | $\frac{196-28x+x^2}{4}$ |       |

Variance, 
$$\sigma^2 = \frac{1}{n} \sum (x_i - \bar{x})^2$$

$$(3.5)^{2} = \frac{1}{4} \left[ \frac{16 + 8x + x^{2}}{4} + \frac{4 + 4x + x^{2}}{4} + \frac{64 - 48x + 9x^{2}}{4} + \frac{9 - 6x + x^{2}}{4} \right]$$



 $12.25 \times 16 = 280 - 64x + 12x^2$ 

 $196 = 280 - 64x + 12x^2$ 

 $12x^2 - 64x + 84 = 0$ 

or  $3x^2 - 16x + 21 = 0$ 

or (3x - 7)(x - 3) = 0

=> Either 3x − 7 = 0 or x − 3 = 0

=>x = 7/3 or x = 3

Therefore, possible values of x are 3 and 7/3.

Question 2: The variance of 15 observations is 6. If each observation is increased by 8, find the variance of the resulting observations.

Solution: Let x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>, x<sub>4</sub>,...., x<sub>15</sub> are any random 15 observations.

Variance = 6 and n = 15 (Given)

We know that,

Variance, 
$$\sigma^2 = \frac{1}{n} \sum (x_i - \bar{x})^2$$

$$6 = \frac{1}{15} \sum (x_i - \overline{x})^2$$

 $90 = \sum (x_i - \bar{x})^2$  ....(1)

If each observation is increased by 8, then let new observations be  $y_1$ ,  $y_2$ ,  $y_3$ ,  $y_4$ ,....,  $y_{15}$ ; where  $y_1 = x_1 + 8$  ......(2)

Now, find the variance for new observations:

New Variance 
$$=\frac{1}{n}\sum(y_i - \bar{y})^2$$

Mean of new observations,



$$\begin{split} \bar{y} &= \frac{\sum_{i=1}^{n} y_{i}}{n} \\ \bar{y} &= \frac{\sum_{i=1}^{15} x_{i} + 8}{15} \\ \text{[Using equation (2)]} \\ \bar{y} &= \frac{1}{15} \left[ \sum_{i=1}^{15} x_{i} + 8 \sum_{i=1}^{15} 1 \right] \\ \bar{y} &= \frac{1}{15} \sum_{i=1}^{15} x_{i} + 8 \times \frac{15}{15} \\ \bar{y} &= \bar{x} + 8 \quad \dots (3) \\ \end{split}$$
Using equation (2) and (3) in equation (1), we get 
$$\sum (x_{i} - \bar{x})^{2} = 90 \\ \sum (y_{i} - 8 - (\bar{y} - 8))^{2} = 90 \end{split}$$

$$\sum (y_i - 8 - \bar{y} + 8)^2 = 90$$

$$\sum (y_i - \overline{y})^2 = 90$$

New Variance  $=\frac{1}{n}\sum_{i}(y_i - \overline{y})^2$ 

$$=\frac{1}{15} \times 90$$
$$= 6$$

Question 3: The variance of 20 observations is 5. If each observation is multiplied by 2. Find the variance of the resulting observations.

## Solution:

Given: Variance = 5 and n = 20 Let  $x_1$ ,  $x_2$ ,  $x_3$ ,  $x_4$ ,....,  $x_{20}$  are any random 20 observations.



Variance, 
$$\sigma^2 = \frac{1}{n} \sum (x_i - \overline{x})^2$$

$$5 = \frac{1}{20} \sum (x_i - \overline{x})^2$$

 $100 = \sum (x_i - \bar{x})^2$  .....(1)

If each observation is multiplied by 2, then let new observations be  $y_1$ ,  $y_2$ ,  $y_3$ ,  $y_4$ ,....,  $y_{20}$ . where  $y_1 = 2x_1$  ......(2)

Now, find the variance for new observations:

New Variance 
$$=\frac{1}{n}\sum(y_i - \bar{y})^2$$

Mean of new observations,

$$\overline{y} = \frac{\sum y_i}{n}$$
$$\overline{y} = \frac{\sum (2x_i)}{20}$$

[Using equation (2)]

$$\overline{y} = 2\left(\frac{\sum x_i}{20}\right)$$

$$\bar{y} = 2\bar{x}$$
 ...(3)

Using equation (2) and (3) in equation (1), we get

$$\begin{split} & \Sigma (x_i - \bar{x})^2 = 100 \\ & \Sigma \left(\frac{1}{2} y_i - \frac{1}{2} \bar{y}\right)^2 = 100 \\ & \left(\frac{1}{2}\right)^2 \Sigma \ (y_i - \bar{y})^2 = 100 \\ & \Sigma (y_i - \bar{y})^2 = 400 \end{split}$$

New Variance  $=\frac{1}{n}\sum (y_i - \overline{y})^2$  $=\frac{1}{20} \times 400$ = 20



Question 4: The mean and variance of five observations are 6 and 4 respectively. If three of these are 5, 7 and 9, find the other two observations.

#### Solution:

Mean of five observations = 6 and Variance of five observations = 4 Let the other two observations be x and y, then new set of observations be 5, 7, 9, x and y

Total number of observations = 5 Sum of all the observations = 5 + 7 + 9 + x + y = 21 + x + y

We know, Mean = (Sum of all the observations) / (Total number of observations)

=> 6 = (21 + x + y)/5

 $=>9 = x + y \dots (1)$ 

Also,

| xi | $\mathbf{x_i} - \bar{\mathbf{x}}$ | $(x_i - \bar{x})^2$  |
|----|-----------------------------------|----------------------|
| 5  | 5 - 6 = -1                        | 1                    |
| 7  | 7 - 6 = 1                         | 1                    |
| 9  | 9 - 6 = 3                         | 9                    |
| x  | x - 6                             | (x - 6) <sup>2</sup> |
| у  | y - 6                             | (y - 6) <sup>2</sup> |

$$\sum (x_i - \bar{x})^2 = 11 + (x - 6)^2 + (y - 6)^2$$

Variance, 
$$\sigma^2 = \frac{\sum (x_i - \overline{x})^2}{n}$$

$$4 = \frac{11 + (x - 6)^2 + (y - 6)^2}{5}$$



 $20 = 11 + (x^2 + 36 - 12x) + (y^2 + 36 - 12y)$  $9 = x^2 + y^2 + 72 - 12(x + y)$  $x^{2} + y^{2} + 72 - 12(9) - 9 = 0$ (using equation (1))  $x^2 + y^2 + 63 - 108 = 0$  $x^2 + y^2 - 45 = 0$ or  $x^2 + y^2 = 45$  ....(2) Form (1); x + y = 9Squaring both sides,  $(x + y)^2 = (9)^2$  $(x^2 + y^2) + 2xy = 81$ 45 + 2xy = 81 (using equation (2)) 2xy = 81 - 45or xy = 18 or x = 18/y(1) = 18/y + y = 9 $y^2 - 9y + 18 = 0$ (y-3)(y-6) = 0Either (y - 3) = 0 or (y - 6) = 0=> y = 3, 6 For y = 3x = 18/3 = 6and for y = 6x = 18/6 = 3

Thus, remaining two observations are 3 and 6.



Question 5: The mean and variance of five observations are 4.4 and 8.24 respectively. If three of these are 1, 2 and 6, find the other two observations.

### Solution:

Mean of five observations = 4.4 and Variance of five observations = 8.24 Let the other two observations be x and y, then new set of observations be 1, 2, 6, x and y.

Total number of observations = 5 Sum of all the observations = 1 + 2 + 6 + x + y = 9 + x + y

We know, Mean = (Sum of all the observations) / (Total number of observations)

=>4.4 = (9 + x + y)/5

=> 13 = x + y .....(1)

Also,

| x <sub>i</sub> | $x_i - 4.4$ | $(x_i - \bar{x})^2$ |
|----------------|-------------|---------------------|
| 1              | -3.4        | 11.56               |
| 2              | -2.4        | 5.76                |
| 6              | 1.6         | 2.56                |
| x              | x - 4.4     | $(x - 4.4)^2$       |
| у              | y - 4.4     | $(y - 4.4)^2$       |

$$\sum (x_i - \overline{x})^2 = 19.88 + (x - 4.4)^2 + (y - 4.4)^2$$

Variance, 
$$\sigma^2 = \frac{\sum (x_i - \overline{x})^2}{n}$$

$$8.24 = \frac{19.88 + (x - 4.4)^2 + (y - 4.4)^2}{5}$$



 $41.2 = 19.88 + (x^2 + 19.36 - 8.8x) + (y^2 + 19.36 - 8.8y)$ 

 $21.32 = x^2 + y^2 + 38.72 - 8.8(x + y)$  $x^2 + y^2 + 38.72 - 8.8(13) - 21.32 = 0$ (using equation (1))

 $x^2 + y^2 - 97 = 0$  ...(2)

Squaring equation (1) both the sides, we get

| $(x + y)^2 = (13)^2$                   |
|----------------------------------------|
| $x^2 + y^2 + 2xy = 169$                |
| 97 + 2xy = 169<br>(using equation (2)) |
| xy = 36                                |
| or x = 36/y                            |
| (1)=> 36/y + y = 13                    |
| y <sup>2</sup> + 36 = 13y              |
| $y^2 - 13y + 36 = 0$                   |
| (y-4)(y-9) = 0                         |
| Either $(y - 4) = 0$ or $(y - 9) = 0$  |
| => y = 4 or y = 9                      |
| For y = 4                              |
| x = 36/y = 36/4 = 12                   |
| For y = 9                              |
| x = 36/9 = 4                           |
|                                        |

Thus, remaining two observations are 4 and 9.



# Exercise 30D

# Page No: 944

Question 1: The following results show the number of workers and the wages paid to them in two factories  $F_1$  and  $F_2$ .

| Factory                     | Α       | В       |
|-----------------------------|---------|---------|
| Number of workers           | 3600    | 3200    |
| Mean wages                  | Rs 5300 | Rs 5300 |
| Variance of distribution of | 100     | 81      |
| wage                        |         |         |

Which factory has more variation in wages?

Solution:

Mean wages of both the factories = Rs. 5300

Find the coefficient of variation (CV) to compare the variation.

We know, CV = SD/Mean x 100, where SD is the standard deviation.

The variance of factory A is 100 and the variance of factory B is 81.

Now, SD of factory  $A = \sqrt{100} = 10$ 

And, SD of factory  $B = \sqrt{81} = 9$ 

Therefore,

The CV of factory A = 10/5300 x 100 = 0.189

The CV of factory B = 9/5300 x 100 = 0.169

Here, the CV of factory A is greater than the CV of factory B.

Hence, factory A has more variation in wages.

Question 2: Coefficient of variation of the two distributions are 60% and 80% respectively, and their standard deviations are 21 and 16 respectively. Find their arithmetic means.

## Solution:

Step 1: Coefficient of variation (CV) is 60%, and the standard deviation (SD) is 21.

We know,  $CV = SD/Mean \times 100$ , where SD is the standard deviation.



or Mean = SD/CV x 100

= 21/60 x 100

= 35

Step 2: Coefficient of variation (CV) is 80%, and the standard deviation (SD) is 16.

Now, Mean = SD/CV x 100

= 16/80 x 100

= 20

Therefore, the arithmetic mean of both the distribution are 35 and 20.

Question 3: The mean and variance of the heights and weights of the students of a class are given below:

|      | Heights       | Weights |
|------|---------------|---------|
| Mean | 63.2 inches   | 63.2 kg |
| SD   | 11.5 inches 🎽 | 5.6 kg  |

Which shows more variability, heights or weights?

#### Solution:

Step 1: In case of heights

Mean = 63.2 inches and SD = 11.5 inches.

Coefficient of variation:

We know,  $CV = SD/Mean \times 100$ , where SD is the standard deviation.

CV = 11.5/63.2 x 100 = 18.196

Step 2: In case of weights

Mean = 63.2 inches and SD = 5.6 inches.



Coefficient of variation:

CV = 5.6/63.2 x 100 = 8.86

From both the steps, we found

CV of heights > CV of weights

So, heights show more variability.

Question 4: The mean and variance of the heights and weights of the students of a class are given below:

| Firm                     | Α       | В       |
|--------------------------|---------|---------|
| Number of workers        | 560     | 650     |
| Mean monthly wages       | Rs 5460 | Rs 5460 |
| Variance of distribution | 100     | 121     |
| of wage                  |         |         |

(i) Which firm pays a larger amount as monthly wages?

(ii) Which firm shows greater variability in individual wages?

## Solution:

(i)

Both the factories pay the same mean monthly wages i.e. Rs 5460

Number of workers for factory A = 560 Number of workers for factory B = 650

Factory A totally pays as monthly wage = Rs.(5460 x 560) = Rs. 3057600

Factory B totally pays as monthly wage = Rs.(5460 x 650) = Rs. 3549000

That means, factory B pays a larger amount as monthly wages.

(ii)

Find the coefficient of variation (CV) to compare the variation.

We know, CV = SD/Mean x 100, where SD is the standard deviation.



The variance of factory A is 100 and the variance of factory B is 121.

Now, SD of factory A =  $\sqrt{100}$  = 10

SD of factory  $B = \sqrt{121} = 11$ 

Therefore,

The CV of factory A = 10/5460 x 100 = 0.183

The CV of factory B = 11/5460 x 100 = 0.201

Here, CV of factory B is greater than the CV of factory A.

Hence, factory B shows greater variability.

Question 5: The sum and the sum of squares of length x (in cm) and weight y (in g) of 50 plant products are given below:

 $\sum_{i=1}^{50} x_i = 212, \ \sum_{i=1}^{50} x_i^2 = 902.8, \ \sum_{i=1}^{50} y_i = 261 \ \text{and} \ \sum_{i=1}^{50} y_i^2 = 1457.6$ 

Which is more variable, the length or weight?

## Solution:

Compare the coefficients of variation (CV) to get required result.

Here the number of products are n = 50 for length and weight both.

Step 1: For length



$$Mean = \frac{\sum x_i}{n} = \frac{212}{50} = 4.24$$

$$Variance = \frac{1}{n^2} [n \sum x_i^2 - (\sum x_i)^2]$$

$$= \frac{1}{50^2} [(50 \times 902.8) - (212)^2]$$

$$= \frac{196}{2500}$$

$$= 0.0784$$

$$SD = \sqrt{Variance} = \sqrt{0.0784} = 0.28$$

$$\frac{Coefficient of variation of length:}{CV = \frac{0.28}{2500} \times 100} = 6.602$$

$$\frac{1}{4.24} \times 100 = 0.003$$

Step 2: For weight  
Mean = 
$$\frac{\sum y_i}{n} = \frac{261}{50} = 5.22$$
  
Variance =  $\frac{1}{n^2} [n \sum y_i^2 - (\sum y_i)^2]$   
=  $\frac{1}{50^2} [(50 \times 1457.6) - (261)^2]$   
=  $\frac{4759}{2500}$ 

=1.9036

$$SD = \sqrt{Variance} = \sqrt{1.9036} = 1.37$$

Coefficient of variation of length:

$$CV = \frac{1.37}{5.22} \times 100 = 26.245$$

From above results, we can say CV of weight) > CV of length

Therefore, the weight is more variable than height.