

EXERCISE 6.1

PAGE NO: 6.12

1. Find the values of each of the following:

- (i) 13²
- (ii) 7³
- (iii) 3⁴

Solution:

- (i) Given 13²
- $13^2 = 13 \times 13 = 169$
- (ii) Given 7³

$$7^3 = 7 \times 7 \times 7 = 343$$

- (iii) Given 3⁴
- $3^4 = 3 \times 3 \times 3 \times 3$
- = 81

2. Find the value of each of the following:

- (i) $(-7)^2$
- (ii) (-3)⁴
- (iii) (-5)⁵

- (i) Given $(-7)^2$
- We know that (-a) even number = positive number
- (-a) odd number = negative number

We have,
$$(-7)^2 = (-7) \times (-7)$$

- = 49
- (ii) Given (-3)⁴
- We know that (-a) even number = positive number
- (-a) odd number = negative number

We have,
$$(-3)^4 = (-3) \times (-3) \times (-3) \times (-3)$$

- = 81
- (iii) Given (-5)⁵

We know that (-a) even number = positive number

(-a) odd number = negative number

We have, $(-5)^5 = (-5) \times (-5) \times (-5) \times (-5) \times (-5)$

= -3125

3. Simplify:

- (i) 3×10^2
- (ii) $2^2 \times 5^3$
- (iii) $3^3 \times 5^2$

Solution:

(i) Given 3×10^2

 $3\times10^2=3\times10\times10$

 $= 3 \times 100$

= 300

(ii) Given $2^2 \times 5^3$

 $2^2 \times 5^3 = 2 \times 2 \times 5 \times 5 \times 5$

 $= 4 \times 125$

= 500

(iii) Given $3^3 \times 5^2$

 $3^3 \times 5^2 = 3 \times 3 \times 3 \times 5 \times 5$

 $= 27 \times 25$

= 675

4. Simply:

- (i) $3^2 \times 10^4$
- (ii) $2^4 \times 3^2$
- (iii) $5^2 \times 3^4$

Solution:

(i) Given $3^2 \times 10^4$

 $3^2 \times 10^4 = 3 \times 3 \times 10 \times 10 \times 10 \times 10$

= 9 × 10000

= 90000

(ii) Given
$$2^4 \times 3^2$$

$$2^4 \times 3^2 = 2 \times 2 \times 2 \times 2 \times 3 \times 3$$

$$= 16 \times 9$$

(iii) Given
$$5^2 \times 3^4$$

$$5^2 \times 3^4 = 5 \times 5 \times 3 \times 3 \times 3 \times 3$$

$$= 25 \times 81$$

5. Simplify:

(i)
$$(-2) \times (-3)^3$$

(ii)
$$(-3)^2 \times (-5)^3$$

(iii)
$$(-2)^5 \times (-10)^2$$

Solution:

(i) Given
$$(-2) \times (-3)^3$$

$$(-2) \times (-3)^3 = (-2) \times (-3) \times (-3) \times (-3)$$

$$= (-2) \times (-27)$$

(ii) Given
$$(-3)^2 \times (-5)^3$$

$$(-3)^2 \times (-5)^3 = (-3) \times (-3) \times (-5) \times (-5) \times (-5)$$

$$= 9 \times (-125)$$

(iii) Given
$$(-2)^5 \times (-10)^2$$

$$(-2)^5 \times (-10)^2 = (-2) \times (-2) \times (-2) \times (-2) \times (-2) \times (-10) \times (-10)$$

$$= (-32) \times 100$$

6. Simplify:

(i)
$$(3/4)^2$$

(i) Given
$$(3/4)^2$$

$$(3/4)^2 = (3/4) \times (3/4)$$

$$= (9/16)$$

$$(-2/3)^4 = (-2/3) \times (-2/3) \times (-2/3) \times (-2/3)$$

$$= (16/81)$$

$$(-4/5)^5 = (-4/5) \times (-4/5) \times (-4/5) \times (-4/5) \times (-4/5)$$

$$= (-1024/3125)$$

7. Identify the greater number in each of the following:

- (i) 2⁵ or 5²
- (ii) 3⁴ or 4³
- (iii) 3⁵ or 5³

Solution:

(i) Given
$$2^5$$
 or 5^2

$$2^5 = 2 \times 2 \times 2 \times 2 \times 2$$

$$5^2 = 5 \times 5$$

Therefore, $2^5 > 5^2$

$$3^4 = 3 \times 3 \times 3 \times 3$$

$$4^3 = 4 \times 4 \times 4$$

Therefore, $3^4 > 4^3$

$$3^5 = 3 \times 3 \times 3 \times 3 \times 3$$

$$5^3 = 5 \times 5 \times 5$$

Therefore, $3^5 > 5^3$

8. Express each of the following in exponential form:

(i)
$$(-5) \times (-5) \times (-5)$$

(ii)
$$(-5/7) \times (-5/7) \times (-5/7) \times (-5/7)$$

(iii)
$$(4/3) \times (4/3) \times (4/3) \times (4/3) \times (4/3)$$

Solution:

(i) Given
$$(-5) \times (-5) \times (-5)$$

Exponential form of (-5) × (-5) × (-5) = $(-5)^3$

(ii) Given
$$(-5/7) \times (-5/7) \times (-5/7) \times (-5/7)$$

Exponential form of $(-5/7) \times (-5/7) \times (-5/7) \times (-5/7) = (-5/7)^4$

(iii) Given
$$(4/3) \times (4/3) \times (4/3) \times (4/3) \times (4/3)$$

Exponential form of $(4/3) \times (4/3) \times (4/3) \times (4/3) \times (4/3) = (4/3)^5$

9. Express each of the following in exponential form:

(i)
$$x \times x \times x \times x \times a \times a \times b \times b \times b$$

(ii)
$$(-2) \times (-2) \times (-2) \times (-2) \times a \times a \times a$$

(iii)
$$(-2/3) \times (-2/3) \times x \times x \times x$$

Solution:

(i) Given
$$x \times x \times x \times x \times a \times a \times b \times b \times b$$

Exponential form of $x \times x \times x \times x \times a \times a \times b \times b \times b = x^4a^2b^3$

(ii) Given
$$(-2) \times (-2) \times (-2) \times (-2) \times a \times a \times a$$

Exponential form of $(-2) \times (-2) \times (-2) \times (-2) \times a \times a \times a = (-2)^4 a^3$

(iii) Given
$$(-2/3) \times (-2/3) \times x \times x \times x$$

Exponential form of $(-2/3) \times (-2/3) \times x \times x \times x = (-2/3)^2 x^3$

10. Express each of the following numbers in exponential form:

- (i) 512
- (ii) 625
- (iii) 729

(i) Given 512

(ii) Given 625

Prime factorization of $625 = 5 \times 5 \times 5 \times 5$ = 5^4

(iii) Given 729

11. Express each of the following numbers as a product of powers of their prime factors:

- (i) 36
- (ii) 675
- (iii) 392

Solution:

(i) Given 36 Prime factorization of 36 = $2 \times 2 \times 3 \times 3$ = $2^2 \times 3^2$

(ii) Given 675

Prime factorization of $675 = 3 \times 3 \times 5 \times 5$ = $3^3 \times 5^2$

(iii) Given 392

Prime factorization of 392 = $2 \times 2 \times 2 \times 7 \times 7$ = $2^3 \times 7^2$

12. Express each of the following numbers as a product of powers of their prime factors:

- (i) 450
- (ii) 2800
- (iii) 24000

Solution:

(i) Given 450

Prime factorization of $450 = 2 \times 3 \times 3 \times 5 \times 5$

$$= 2 \times 3^2 \times 5^2$$

(ii) Given 2800

Prime factorization of 2800 = 2 x 2 x 2 x 2 x 5 x 5 x 7

$$= 2^4 \times 5^2 \times 7$$

(iii) Given 24000

Prime factorization of 24000 = 2 x 2 x 2 x 2 x 2 x 2 x 3 x 5 x 5 x 5

$$= 2^6 \times 3 \times 5^3$$

13. Express each of the following as a rational number of the form (p/q):

- (i) $(3/7)^2$
- (ii) $(7/9)^3$
- (iii) (-2/3)⁴

Solution:

(i) Given $(3/7)^2$

 $(3/7)^2 = (3/7) \times (3/7)$

$$= (9/49)$$

(ii) Given $(7/9)^3$

 $(7/9)^3 = (7/9) \times (7/9) \times (7/9)$

(iii) Given (-2/3)⁴

 $(-2/3)^4 = (-2/3) \times (-2/3) \times (-2/3) \times (-2/3)$

= ((16/81)

14. Express each of the following rational numbers in power notation:

- (i) (49/64)
- (ii) (- 64/125)
- (iii) (-12/16)

(i) Given (49/64) We know that $7^2 = 49$ and $8^2 = 64$ Therefore (49/64) = $(7/8)^2$

(ii) Given (- 64/125) We know that $4^3 = 64$ and $5^3 = 125$ Therefore (- 64/125) = (- 4/5)³

(iii) Given (-1/216) We know that $1^3 = 1$ and $6^3 = 216$ Therefore -1/216) = - $(1/6)^3$

15. Find the value of the following:

(i)
$$(-1/2)^2 \times 2^3 \times (3/4)^2$$

(ii)
$$(-3/5)^4 \times (4/9)^4 \times (-15/18)^2$$

Solution:

(i) Given
$$(-1/2)^2 \times 2^3 \times (3/4)^2$$

 $(-1/2)^2 \times 2^3 \times (3/4)^2 = 1/4 \times 8 \times 9/16$
 $= 9/8$

(ii) Given
$$(-3/5)^4 \times (4/9)^4 \times (-15/18)^2$$

 $(-3/5)^4 \times (4/9)^4 \times (-15/18)^2 = (81/625) \times (256/6561) \times (225/324)$
 $= (64/18225)$

16. If a = 2 and b= 3, the find the values of each of the following:

(i)
$$(a + b)^a$$

$$(iv) ((a/b) + (b/a))^a$$

(i) Consider
$$(a + b)^a$$

Given $a = 2$ and $b = 3$
 $(a + b)^a = (2 + 3)^2$
 $= (5)^2$
 $= 25$

(ii) Given a = 2 and b = 3
Consider,
$$(a b)^b = (2 \times 3)^3$$

= $(6)^3$
= 216

(iii) Given a =2 and b = 3
Consider,
$$(b/a)^b = (3/2)^3$$

= 27/8

(iv) Given a = 2 and b = 3
Consider,
$$((a/b) + (b/a))^a = ((2/3) + (3/2))^2$$

= $(4/9) + (9/4)$
LCM of 9 and 6 is 36
= $169/36$