

EXERCISE 6.2

PAGE NO: 6.28

1. Using laws of exponents, simplify and write the answer in exponential form

- (i) $2^3 \times 2^4 \times 2^5$
- (ii) $5^{12} \div 5^3$
- $(iii) (7^2)^3$
- (iv) $(3^2)^5 \div 3^4$
- (v) $3^7 \times 2^7$
- (vi) $(5^{21} \div 5^{13}) \times 5^7$

Solution:

(i) Given $2^3 \times 2^4 \times 2^5$

We know that first law of exponents states that $a^m \times a^n \times a^p = a^{(m+n+p)}$ Therefore above equation can be written as $2^3 \times 2^4 \times 2^5 = 2^{(3+4+5)}$ = 2^{12}

(ii) Given $5^{12} \div 5^3$

According to the law of exponents we have $a^m \div a^n = a^{m-n}$ Therefore given question can be written as $5^{12} \div 5^3 = 5^{12-3} = 5^9$

(iii) Given $(7^2)^3$

According to the law of exponents we have $(a^m)^n = a^{mn}$ Therefore given question can be written as $(7^2)^3 = 7^6$

(iv) Given $(3^2)^5 \div 3^4$

According to the law of exponents we have $(a^m)^n = a^{mn}$ Therefore $(3^2)^5 \div 3^4 = 3^{10} \div 3^4$

According to the law of exponents we have $a^m \div a^n = a^{m-n}$ $3^{10} \div 3^4 = 3^{(10-4)} = 3^6$

(v) Given $3^7 \times 2^7$

We know that law of exponents states that $a^m \times b^m = (a \times b)^m$ $3^7 \times 2^7 = (3 \times 2)^7 = 6^7$

(vi) Given $(5^{21} \div 5^{13}) \times 5^7$

According to the law of exponents we have $a^m \div a^n = a^{m-n} = 5^{(21-13)} \times 5^7$

$$= 5^8 \times 5^7$$

According to the law of exponents we have $a^m x a^n = a^{(m+n)}$ = $5^{(8+7)} = 5^{15}$

2. Simplify and express each of the following in exponential form:

(i)
$$\{(2^3)^4 \times 28\} \div 2^{12}$$

(ii)
$$(8^2 \times 8^4) \div 8^3$$

(iii)
$$(5^7/5^2) \times 5^3$$

(iv)
$$(5^4 \times x^{10}y^5)/(5^4 \times x^7y^4)$$

Solution:

(i) Given
$$\{(2^3)^4 \times 28\} \div 2^{12}$$

 $\{(2^3)^4 \times 2^8\} \div 2^{12} = \{2^{12} \times 2^8\} \div 2^{12} \text{ [According to the law of exponents we have } (a^m)^n = a^{mn}\}$

=
$$2^{(12+8)} \div 2^{12}$$
[According to the law of exponents we have $a^m \times a^n = a^{(m+n)}$]

=
$$2^{20} \div 2^{12}$$
 [According to the law of exponents we have $a^m \div a^n = a^{m-n}$]

$$= 2^{(20-12)}$$

$$= 2^8$$

(ii) Given
$$(8^2 \times 8^4) \div 8^3$$

 $(8^2 \times 8^4) \div 8^3$ [According to the law of exponents we have $a^m \times a^n = a^{(m+n)}$]

$$= 8^{(2+4)} \div 8^3$$

= $8^6 \div 8^3$ [According to the law of exponents we have $a^m \div a^n = a^{m-n}$]

$$= 8^{(6-3)} = 8^3 = (2^3)^3 = 2^9$$

(iii) Given $(5^7/5^2) \times 5^3$

= $5^{(7-2)}$ x 5^3 [According to the law of exponents we have $a^m \div a^n = a^{m-n}$]

=
$$5^5 \times 5^3$$
 [According to the law of exponents we have $a^m \times a^n = a^{(m+n)}$]

$$=5^{(5+3)}=5^{8}$$

(iv) Given
$$(5^4 \times x^{10}y^5)/(5^4 \times x^7y^4)$$

= $(5^{4-4} \times x^{10-7}y^{5-4})$ [According to the law of exponents we have $a^m \div a^n = a^{m-n}$]

$$= 5^{0}x^{3}y^{1}$$
 [since $5^{0} = 1$]

$$= 1x^{3}v$$

3. Simplify and express each of the following in exponential form:

(i)
$$\{(3^2)^3 \times 2^6\} \times 5^6$$

(ii)
$$(x/y)^{12} \times y^{24} \times (2^3)^4$$

(iii)
$$(5/2)^6 \times (5/2)^2$$

(iv) $(2/3)^5 \times (3/5)^5$

Solution:

- (i) Given $\{(3^2)^3 \times 2^6\} \times 5^6$
- = $\{3^6 \times 2^6\} \times 5^6$ [According to the law of exponents we have $(a^m)^n = a^{mn}$]
- = $6^6 \times 5^6$ [since law of exponents states that $a^m \times b^m = (a \times b)^m$]
- $=30^{6}$
- (ii) Given $(x/y)^{12} \times y^{24} \times (2^3)^4$
- $= (x^{12}/y^{12}) \times y^{24} \times 2^{12}$
- = $x^{12} \times y^{24-12} \times 2^{12}$ [According to the law of exponents we have $a^m \div a^n = a^{m-n}$]
- $= x^{12} \times y^{12} \times 2^{12}$
- $= (2xy)^{12}$
- (iii) Given $(5/2)^6 \times (5/2)^2$
- = $(5/2)^{6+2}$ [According to the law of exponents we have $a^m \times a^n = a^{(m+n)}$]
- $=(5/2)^8$
- (iv) Given $(2/3)^5 \times (3/5)^5$
- = $(2/5)^5$ [since law of exponents states that $a^m \times b^m = (a \times b)^m$]
- 4. Write $9 \times 9 \times 9 \times 9 \times 9$ in exponential form with base 3.

Solution:

Given
$$9 \times 9 \times 9 \times 9 \times 9 = (9)^5 = (3^2)^5$$

= 3^{10}

- 5. Simplify and write each of the following in exponential form:
- (i) $(25)^3 \div 5^3$
- (ii) $(81)^5 \div (3^2)^5$
- (iii) $9^8 \times (x^2)^5 / (27)^4 \times (x^3)^2$
- (iv) $3^2 \times 7^8 \times 13^6 / 21^2 \times 91^3$

Solution:

- (i) Given $(25)^3 \div 5^3$
- = $(5^2)^3 \div 5^3$ [According to the law of exponents we have $(a^m)^n = a^{mn}$]

 $=3^{115}-3^{115}$

```
= 5^6 \div 5^3 [According to the law of exponents we have a^m \div a^n = a^{m-n}]
= 5^{6-3}
= 5^3
(ii) Given (81)^5 \div (3^2)^5 [According to the law of exponents we have (a^m)^n = a^{mn}]
= (81)^5 \div 3^{10}[81 = 3^4]
= (3^4)^5 \div 3^{10} [According to the law of exponents we have (a^m)^n = a^{mn}]
= 3^{20-10} [According to the law of exponents we have a^m \div a^n = a^{m-n}]
=3^{10}
(iii) Given 9^8 \times (x^2)^5 / (27)^4 \times (x^3)^2
= (3^2)^8 \times (x^2)^5 / (3^3)^4 \times (x^3)^2 [According to the law of exponents we have (a^m)^n = a^{mn}]
= 3^{16} \times x^{10}/3^{12} \times x^{6}
= 3^{16-12} \times x^{10-6}[According to the law of exponents we have a^m \div a^n = a^{m-n}]
= 3^4 \times x^4
= (3x)^4
(iv) Given (3^2 \times 7^8 \times 13^6)/(21^2 \times 91^3)
= (3^2 \times 7^2 7^8 \times 13^6)/(21^2 \times 13^3 \times 7^3)[According to the law of exponents we have (a^m)^n = a^{mn}]
= (21^2 \times 7^2 \times 13^6)/(21^2 \times 13^3 \times 7^3)
= (7^6 \times 13^6)/(13^3 \times 7^3)
= 91^6/91^3 [According to the law of exponents we have a^m \div a^n = a^{m-n}]
= 91^{6-3}
= 91^3
6. Simplify:
(i) (3^5)^{11} \times (3^{15})^4 - (3^5)^{18} \times (3^5)^5
(ii) (16 \times 2^{n+1} - 4 \times 2^n)/(16 \times 2^{n+2} - 2 \times 2^{n+2})
(iii) (10 \times 5^{n+1} + 25 \times 5^n)/(3 \times 5^{n+2} + 10 \times 5^{n+1})
(iv) (16)^7 \times (25)^5 \times (81)^3 / (15)^7 \times (24)^5 \times (80)^3
Solution:
(i) Given (3^5)^{11} \times (3^{15})^4 - (3^5)^{18} \times (3^5)^5
= (3)^{55} \times (3)^{60} - (3)^{90} \times (3)^{25}[According to the law of exponents we have (a^m)^n = a^{mn}]
= 3^{55+60} - 3^{90+25}
```



```
= 0
(ii) Given (16 \times 2^{n+1} - 4 \times 2^n)/(16 \times 2^{n+2} - 2 \times 2^{n+2})
= (2^4 \times 2^{(n+1)} - 2^2 \times 2^n)/(2^4 \times 2^{(n+2)} - 2^{2+1} \times 2^2) [According to the law of exponents we have
(a^{m})^{n} = a^{mn}
= 2^2 \times 2^{(n+3-2n)}/12^2 \times 2^{(n+4-2n+1)}
= 2^{n} \times 2^{3} - 2^{n}/2^{n} \times 2^{4} - 2^{n} \times 2
= 2^{n}(2^{3}-1)/2^{n}(2^{4}-1) [According to the law of exponents we have a^{m} \div a^{n} = a^{m-n}]
= 8 -1 /16 -2
= 7/14
= (1/2)
(iii) Given (10 \times 5^{n+1} + 25 \times 5^n)/(3 \times 5^{n+2} + 10 \times 5^{n+1})
= (10 \times 5^{n+1} + 5^2 \times 5^n)/(3 \times 5^{n+2} + (2 \times 5) \times 5^{n+1})
= (10 \times 5^{n+1} + 5 \times 5^{n+1})/(3 \times 5^{n+2} + (2 \times 5) \times 5^{n+1}) [According to the law of exponents we
have (a^m)^n = a^{mn}
= 5^{n+1} (10+5)/5^{n+1} (10+15)[According to the law of exponents we have a^m \div a^n = a^{m-n}]
= 15/25
= (3/5)
(iv) Given (16)^7 \times (25)^5 \times (81)^3 / (15)^7 \times (24)^5 \times (80)^3
= (16)^7 \times (5^2)^5 \times (3^4)^3 / (3 \times 5)^7 \times (3 \times 8)^5 \times (16 \times 5)^3
= (16)^7 \times (5^2)^5 \times (3^4)^3/3^7 \times 5^7 \times 3^5 \times 8^5 \times 16^3 \times 5^3
= (16)^7 / 8^5 \times 16^3
= (16)^4/8^5
= (2 \times 8)^4/8^5
= 2^4/8
= (16/8)
```

7. Find the values of n in each of the following:

(i)
$$5^{2n} \times 5^3 = 5^{11}$$

(ii)
$$9 \times 3^n = 3^7$$

= 2

(iii)
$$8 \times 2^{n+2} = 32$$

(iv)
$$7^{2n+1} \div 49 = 7^3$$

(v)
$$(3/2)^4 \times (3/2)^5 = (3/2)^{2n+1}$$

(vi)
$$(2/3)^{10} \times \{(3/2)^2\}^5 = (2/3)^{2n-2}$$

Solution:

(i) Given
$$5^{2n} \times 5^3 = 5^{11}$$

$$=5^{2n+3}=5^{11}$$

On equating the coefficients, we get

$$2n + 3 = 11$$

$$\Rightarrow$$
 n = (8/2)

$$\Rightarrow$$
 n = 4

(ii) Given
$$9 \times 3^n = 3^7$$

$$= (3)^2 \times 3^n = 3^7$$

$$= (3)^{2+n} = 3^7$$

On equating the coefficients, we get

$$2 + n = 7$$

$$\Rightarrow$$
 n = 7 - 2 = 5

(iii) Given
$$8 \times 2^{n+2} = 32$$

=
$$(2)^3$$
 x 2^{n+2} = $(2)^5$ [since 2^3 = 8 and 2^5 = 32]

$$= (2)^{3+n+2} = (2)^5$$

On equating the coefficients, we get

$$3 + n + 2 = 5$$

$$\Rightarrow$$
 n + 5 = 5

$$\Rightarrow$$
 n = 5 -5

$$\Rightarrow$$
 n = 0

(iv) Given
$$7^{2n+1} \div 49 = 7^3$$

$$= 7^{2n+1} \div 7^2 = 7^3$$
 [since $49 = 7^2$]

$$= 7^{2n+1-2} = 7^3$$

$$= 7^{2n-1} = 7^3$$

On equating the coefficients, we get

$$2n - 1 = 3$$

$$\Rightarrow$$
 2n = 3 + 1

$$\Rightarrow$$
 2n = 4

$$\Rightarrow$$
 n =4/2 =2

(v) Given
$$(3/2)^4 \times (3/2)^5 = (3/2)^{2n+1}$$

=
$$(3/2)^{4+5}$$
 = $(3/2)^{2n+1}$
= $(3/2)^9$ = $(3/2)^{2n+1}$

On equating the coefficients, we get

$$2n + 1 = 9$$

$$\Rightarrow$$
 2n = 9 - 1

$$\Rightarrow$$
 2n = 8

$$\Rightarrow$$
 n =8/2 =4

(vi) Given
$$(2/3)^{10} \times \{(3/2)^2\}^5 = (2/3)^{2n-2}$$

$$= (2/3)^{10} \times (3/2)^{10} = (2/3)^{2n-2}$$

$$= 2^{10} \times 3^{10}/3^{10} \times 2^{10} = (2/3)^{2n-2}$$

$$= 1 = (2/3)^{2n-2}$$

$$=(2/3)^0=(2/3)^{2n-2}$$

On equating the coefficients, we get

$$0 = 2n - 2$$

$$2n - 2 = 0$$

$$2n = 2$$

$$n = 1$$

8. If $(9^n \times 3^2 \times 3^n - (27)^n)/(3^3)^5 \times 2^3 = (1/27)$, find the value of n.

Solution:

Given
$$(9^n \times 3^2 \times 3^n - (27)^n)/(3^3)^5 \times 2^3 = (1/27)$$

$$= (3^2)^n \times 3^3 \times 3^n - (3^3)^n / (3^{15} \times 2^3) = (1/27)$$

$$=3^{(2n+2+n)}-(3^3)^n/(3^{15}\times 2^3)=(1/27)$$

$$=3^{(3n+2)}-(3^3)^n/(3^{15}\times 2^3)=(1/27)$$

$$=3^{3n}\times3^2-3^{3n}/(3^{15}\times2^3)=(1/27)$$

$$=3^{3n}\times(3^2-1)/(3^{15}\times2^3)=(1/27)$$

$$= 3^{3n} \times (9-1)/(3^{15} \times 2^3) = (1/27)$$

$$=3^{3n}\times(8)/(3^{15}\times2^3)=(1/27)$$

$$= 3^{3n} \times 2^3 / (3^{15} \times 2^3) = (1/27)$$

$$=3^{3n}/3^{15}=(1/27)$$

$$=3^{3n-15}=(1/27)$$

$$=3^{3n-15}=(1/3^3)$$

$$=3^{3n-15}=3^{-3}$$

On equating the coefficients, we get

 \Rightarrow 3n = -3 + 15

⇒ 3n = 12

 \Rightarrow n = 12/3 = 4

