

EXERCISE 2.2

PAGE NO: 2.18

1. Write each of the following in exponential form: (i) $(3/2)^{-1} \times (3/2)^{-1} \times (3/2)^{-1} \times (3/2)^{-1}$ (ii) $(2/5)^{-2} \times (2/5)^{-2} \times (2/5)^{-2}$ Solution: (i) $(3/2)^{-1} \times (3/2)^{-1} \times (3/2)^{-1} \times (3/2)^{-1}$ $(3/2)^{-4}$ (we know that $a^{-n} = 1/a^n$, $a^n = a \times a...n$ times) (ii) $(2/5)^{-2} \times (2/5)^{-2} \times (2/5)^{-2}$ $(2/5)^{-6}$ (we know that $a^{-n} = 1/a^n$, $a^n = a \times a...n$ times) 2. Evaluate: (i) 5^{-2} (ii) $(-3)^{-2}$ (iii) $(1/3)^{-4}$

(i) 5^{-2} (ii) $(-3)^{-2}$ (iii) $(1/3)^{-4}$ (iv) $(-1/2)^{-1}$ Solution: (i) 5^{-2} $1/5^2 = 1/25$ (we know that $a^{-n} = 1/a^n$)

(ii) $(-3)^{-2}$ $(1/-3)^2 = 1/9$ (we know that $a^{-n} = 1/a^n$)

(iii) $(1/3)^{-4}$ $3^4 = 81$ (we know that $1/a^{-n} = a^n$)

(iv) $(-1/2)^{-1}$ -2¹ = -2 (we know that $1/a^{-n} = a^{n}$)

3. Express each of the following as a rational number in the form p/q: (i) 6⁻¹ (ii) (-7)⁻¹ (iii) (1/4)⁻¹ (iv) (-4)⁻¹ × (-3/2)⁻¹ (v) (3/5)⁻¹ × (5/2)⁻¹ Solution: (i) 6⁻¹

 $1/6^1 = 1/6$ (we know that $a^{-n} = 1/a^n$) (ii) (-7)⁻¹ $1/-7^1 = -1/7$ (we know that $a^{-n} = 1/a^n$) **(iii)** (1/4)⁻¹ $4^{1} = 4$ (we know that $1/a^{-n} = a^{n}$) (iv) $(-4)^{-1} \times (-3/2)^{-1}$ $1/-4^1 \times (2/-3)^1$ (we know that $a^{-n} = 1/a^n$, $1/a^{-n} = a^n$) $1/-2 \times -1/3$ 1/6 (v) $(3/5)^{-1} \times (5/2)^{-1}$ $(5/3)^1 \times (2/5)^1$ $5/3 \times 2/5$ 2/34. Simplify: (i) $(4^{-1} \times 3^{-1})^2$ (ii) $(5^{-1} \div 6^{-1})^3$ (iii) $(2^{-1} + 3^{-1})^{-1}$ (iv) $(3^{-1} \times 4^{-1})^{-1} \times 5^{-1}$ (v) $(4^{-1} - 5^{-1}) \div 3^{-1}$ **Solution:** (i) $(4^{-1} \times 3^{-1})^2$ $(1/4 \times 1/3)^2$ (we know that $a^{-n} = 1/a^n$) $(1/12)^2$ 1/144(ii) $(5^{-1} \div 6^{-1})^3$ $(1/5 \div 1/6)^3$ (we know that $a^{-n} = 1/a^n$) $(1/5 \times 6)^3$ (we know that $1/a \div 1/b = 1/a \times b/1$) $(6/5)^3$ 216/125 (iii) $(2^{-1} + 3^{-1})^{-1}$ $(1/2 + 1/3)^{-1}$ (we know that $a^{-n} = 1/a^n$) LCM of 2 and 3 is 6

RD Sharma Solutions for Class 8 Maths Chapter 2 - Powers

 $((3+2)/6)^{-1}$ (5/6)⁻¹ (we know that $1/a^{-n} = a^{n}$) 6/5

(iv) $(3^{-1} \times 4^{-1})^{-1} \times 5^{-1}$ $(1/3 \times 1/4)^{-1} \times 1/5$ (we know that $a^{-n} = 1/a^n$) $(1/12)^{-1} \times 1/5$ (we know that $1/a^{-n} = a^n$) $12 \times 1/5$ 12/5

(v) $(4^{-1} - 5^{-1}) \div 3^{-1}$ (1/4 - 1/5) ÷ 1/3 (we know that $a^{-n} = 1/a^n$) LCM of 4 and 5 is 20 (5-4)/20 × 3/1 (we know that $1/a \div 1/b = 1/a \times b/1$) 1/20 × 3 3/20

5. Express each of the following rational numbers with a negative exponent: (i) $(1/4)^3$

(ii) 3^{5} (iii) $(3/5)^{4}$ (iv) $((3/2)^{4})^{-3}$ (v) $((7/3)^{4})^{-3}$ Solution: (i) $(1/4)^{3}$ (4)⁻³ (we know that $1/a^{n} = a^{-n}$) (ii) 3^{5} (1/3)⁻⁵ (we know that $1/a^{n} = a^{-n}$) (iii) $(3/5)^{4}$ (5/3)⁻⁴ (we know that $(a/b)^{-n} = (b/a)^{n}$) (iv) $((3/2)^{4})^{-3}$ (3/2)⁻¹² (we know that $(a^{n})^{m} = a^{nm}$) (v) $((7/3)^{4})^{-3}$ (7/3)⁻¹² (we know that $(a^{n})^{m} = a^{nm}$)

https://byjus.com

6. Express each of the following rational numbers with a positive exponent: (i) (3/4)⁻²

(ii) $(5/4)^{-3}$ (iii) $4^3 \times 4^{-9}$ (iv) $((4/3)^{-3})^{-4}$ $(v) ((3/2)^4)^{-2}$ **Solution: (i)** (3/4)⁻² $(4/3)^2$ (we know that $(a/b)^{-n} = (b/a)^n$) **(ii)** (5/4)⁻³ $(4/3)^3$ (we know that $(a/b)^{-n} = (b/a)^n$) (iii) $4^3 \times 4^{-9}$ $(4)^{3-9}$ (we know that $a^n \times a^m = a^{n+m}$) 4^{-6} $(1/4)^6$ (we know that $1/a^n = a^{-n}$) (iv) $((4/3)^{-3})^{-4}$ $(4/3)^{12}$ (we know that $(a^n)^m = a^{nm}$) $(v) ((3/2)^4)^{-2}$ $(3/2)^{-8}$ (we know that $(a^n)^m = a^{nm}$) $(2/3)^8$ (we know that $1/a^n = a^{-n}$) 7. Simplify: (i) $((1/3)^{-3} - (1/2)^{-3}) \div (1/4)^{-3}$ (ii) $(3^2 - 2^2) \times (2/3)^{-3}$ (iii) $((1/2)^{-1} \times (-4)^{-1})^{-1}$ (iv) $(((-1/4)^2)^{-2})^{-1}$ (v) $((2/3)^2)^3 \times (1/3)^{-4} \times 3^{-1} \times 6^{-1}$ **Solution:** (i) $((1/3)^{-3} - (1/2)^{-3}) \div (1/4)^{-3}$ $(3^3 - 2^3) \div 4^3$ (we know that $1/a^n = a^{-n}$) $(27-8) \div 64$ $19 \div 64$ $19 \times 1/64$ (we know that $1/a \div 1/b = 1/a \times b/1$) 19/64

(ii) $(3^2 - 2^2) \times (2/3)^{-3}$ (9 - 4) × (3/2)³ (we know that $1/a^n = a^{-n}$) 5 × (27/8) 135/8

(iii) $((1/2)^{-1} \times (-4)^{-1})^{-1}$ $(2^1 \times (1/-4))^{-1}$ (we know that $1/a^n = a^{-n}$) $(1/-2)^{-1}$ (we know that $1/a^n = a^{-n}$) -2^1 -2

(iv) $(((-1/4)^2)^{-2})^{-1}$ $((-1/16)^{-2})^{-1}$ (we know that $1/a^n = a^{-n}$) $((-16)^2)^{-1}$ (we know that $1/a^n = a^{-n}$) $(256)^{-1}$ (we know that $1/a^n = a^{-n}$) 1/256

(v) $((2/3)^2)^3 \times (1/3)^{-4} \times 3^{-1} \times 6^{-1}$ (4/9)³ × 3⁴ × 1/3 × 1/6 (we know that 1/aⁿ = a⁻ⁿ) (64/729) × 81 × 1/3 × 1/6 (64/729) × 27 × 1/6 32/729 × 27 × 1/3 32/729 × 9 32/81

8. By what number should 5⁻¹ be multiplied so that the product may be equal to (-7)⁻¹?

Solution:

Let us consider a number x So, $5^{-1} \times x = (-7)^{-1}$ $1/5 \times x = 1/-7$ (we know that $1/a^n = a^{-n}$) x = (-1/7) / (1/5) $= (-1/7) \times (5/1)$ (we know that $1/a \div 1/b = 1/a \times b/1$) = -5/7

9. By what number should $(1/2)^{-1}$ be multiplied so that the product may be equal to $(-4/7)^{-1}$?

Solution:

Let us consider a number x

B BYJU'S

RD Sharma Solutions for Class 8 Maths Chapter 2 – Powers

So, $(1/2)^{-1} \times x = (-4/7)^{-1}$ $1/(1/2) \times x = 1/(-4/7)$ (we know that $1/a^n = a^{-n}$) x = (-7/4) / (2/1) $= (-7/4) \times (1/2)$ (we know that $1/a \div 1/b = 1/a \times b/1$) = -7/8

10. By what number should $(-15)^{-1}$ be divided so that the quotient may be equal to $(-5)^{-1}$?

Solution:

Let us consider a number x So, $(-15)^{-1} \div x = (-5)^{-1}$ (we know that $1/a \div 1/b = 1/a \times b/1$) $1/-15 \times 1/x = 1/-5$ (we know that $1/a^n = a^{-n}$) $1/x = (1 \times -15)/-5$ 1/x = 3x = 1/3

11. By what number should $(5/3)^{-2}$ be multiplied so that the product may be $(7/3)^{-1}$? Solution:

Let us consider a number x So, $(5/3)^{-2} \times x = (7/3)^{-1}$ $1/(5/3)^2 \times x = 1/(7/3)$ (we know that $1/a^n = a^{-n}$) $x = (3/7) / (3/5)^2$ = (3/7) / (9/25) $= (3/7) \times (25/9)$ (we know that $1/a \div 1/b = 1/a \times b/1$) $= (1/7) \times (25/3)$ = 25/21

12. Find x, if

(i) $(1/4)^{-4} \times (1/4)^{-8} = (1/4)^{-4x}$ Solution: $(1/4)^{-4} \times (1/4)^{-8} = (1/4)^{-4x}$ $(1/4)^{-4-8} = (1/4)^{-4x}$ (we know that $a^n \times a^m = a^{n+m}$)

 $(1/4)^{-12} = (1/4)^{-4x}$

When the bases are same we can directly equate the coefficients

-12 = -4xx = -12/-4 = 3

(ii)
$$(-1/2)^{-19} \div (-1/2)^8 = (-1/2)^{-2x+1}$$

https://byjus.com

Solution:

 $(-1/2)^{-19} \div (-1/2)^8 = (-1/2)^{-2x+1}$ $(1/2)^{-19-8} = (1/2)^{-2x+1}$ (we know that $a^n \div a^m = a^{n-m}$) $(1/2)^{-27} = (1/2)^{-2x+1}$ When the bases are same we can directly equate the coefficients -27 = -2x+1-2x = -27-1x = -28/-2= 14

(iii) $(3/2)^{-3} \times (3/2)^5 = (3/2)^{2x+1}$ Solution:

 $(3/2)^{-3} \times (3/2)^5 = (3/2)^{2x+1}$ $(3/2)^{-3+5} = (3/2)^{2x+1}$ (we know that $a^n \times a^m = a^{n+m}$) $(3/2)^2 = (3/2)^{2x+1}$

When the bases are same we can directly equate the coefficients

2 = 2x+12x = 2-1x = 1/2

```
(iv) (2/5)^{-3} \times (2/5)^{15} = (2/5)^{2+3x}
Solution:
(2/5)^{-3} \times (2/5)^{15} = (2/5)^{2+3x}
```

 $(2/5)^{-3+15} = (2/5)^{2+3x}$ (we know that $a^n \times a^m = a^{n+m}$) $(2/5)^{12} = (2/5)^{2+3x}$

When the bases are same we can directly equate the coefficients

12 = 2+3x3x = 12-2x = 10/3

(v) $(5/4)^{-x} \div (5/4)^{-4} = (5/4)^5$ Solution:

 $(5/4)^{-x} \div (5/4)^{-4} = (5/4)^5$ $(5/4)^{-x+4} = (5/4)^5 \text{ (we know that } a^n \div a^m = a^{n-m}\text{)}$ When the bases are same we can directly equate the coefficients -x+4 = 5 -x = 5-4 -x = 1 x = -1

(vi) $(8/3)^{2x+1} \times (8/3)^5 = (8/3)^{x+2}$ Solution:

 $(8/3)^{2x+1} \times (8/3)^5 = (8/3)^{x+2}$ $(8/3)^{2x+1+5} = (8/3)^{x+2}$ (we know that $a^n \times a^m = a^{n+m}$) $(8/3)^{2x+6} = (8/3)^{x+2}$ When the bases are same we can directly equate the coefficients 2x+6 = x+22x-x = -6+2x = -4

13. (i) If $x = (3/2)^2 \times (2/3)^{-4}$, find the value of x^{-2} . Solution:

 $x = (3/2)^{2} \times (2/3)^{-4}$ = (3/2)² × (3/2)⁴ (we know that 1/aⁿ = a⁻ⁿ) = (3/2)²⁺⁴ (we know that aⁿ × a^m = a^{n+m}) = (3/2)⁶ $x^{-2} = ((3/2)^{6})^{-2}$ = (3/2)⁻¹² = (2/3)¹²

(ii) If $x = (4/5)^{-2} \div (1/4)^2$, find the value of x⁻¹. Solution: $x = (4/5)^{-2} \div (1/4)^2$

14. Find the value of x for which $5^{2x} \div 5^{-3} = 5^5$ Solution:

 $5^{2x} \div 5^{-3} = 5^{5}$ $5^{2x+3} = 5^{5}$ (we know that $a^{n} \div a^{m} = a^{n-m}$) When the bases are same we can directly equate the coefficients 2x+3 = 5 2x = 5-3 2x = 2x = 1

https://byjus.com