

EXERCISE 3.5

PAGE NO: 3.43

1. Find the square root of each of the following by long division method:

- (i) 12544 (ii) 97344
- (iii) 286225 (iv) 390625
- (v) 363609 (vi) 974169
- (vii) 120409 (viii) 1471369
- (ix) 291600 (x) 9653449
- (xi) 1745041 (xii) 4008004
- (xiii) 20657025 (xiv) 152547201
- (xv) 20421361 (xvi)62504836
- (xvii) 82264900 (xviii) 3226694416
- (xix) 6407522209 (xx) 3915380329

Solution:

(i) 12544

By using long division method

	112
1	12544
	1
21	25
	24
222	444
	444
	0

∴ the square root of 12544

$$\sqrt{12544} = 112$$

(ii) 97344

By using long division method

312		
3	97344	
	9	
61	73	
	61	
622	1244	
	1244	
	0	

∴ the square root of 97344

$$\sqrt{97344} = 312$$

(iii) 286225

By using long division method

535	
5	286225
	25
103	362
	309
1065	5325
	5325
	0

 $\therefore \text{ the square root of } 286225$ $\sqrt{286225} = 535$

(iv) 390625

By using long division method

	625
6	390625
	36
122	306
	244
1245	6225
	6225
	0

: the square root of 390625 $\sqrt{390625} = 625$

(v) 363609

By using long division method

 $\therefore \text{ the square root of } 363609$ $\sqrt{36369} = 603$

(vi) 974169

987	
9	974169
	81
188	1641
	1504
1967	13769
	13769
	0

: the square root of 974169 $\sqrt{974169} = 987$ (vii) 120409

By using long division method

	347	
3	120409	_
	9	
64	304	
	256	
687	4809	_
	4809	
3	0	

 $\therefore \text{ the square root of } 120409$ $\sqrt{120409} = 347$

(viii) 1471369

By using long division method

•	1213
1	1471369
	1
22	47
	44
241	313
	241
2423	7269
	7269
	0

: the square root of 1471369 $\sqrt{1471369} = 1213$

(ix) 291600

	540	
5	291600	
	25	
104	416	
	416	
1080	00	
	00	
	0	

 $\therefore \text{ the square root of } 291600$ $\sqrt{291600} = 540$

(x) 9653449

By using long division method

	3107
3	9653449
421	9
61	65
8000	61
6107	43449
	43449
	0

: the square root of 9653449 $\sqrt{9653449} = 3107$

(**xi**) 1745041

By using long division method

	1321
1	1745041
	1
23	74
	69
262	550
	524
2641	2641
	2641
	0

: the square root of 1745041 $\sqrt{1745041} = 1321$

(xii) 4008004

2002		
2	4008004	
	4	
40	000	
	0	
400	080	
	0	
4002	8004	
	8004	
	0	

: the square root of 4008004 $\sqrt{4008004} = 2002$

(xiii) 20657025

By using long division method

	4545	
4	20657025	
	16	-
85	465	
	425	
904	4070	
	3616	- 22
9085	45425	
	45425	
	0	

: the square root of 20657025 $\sqrt{20657025} = 4545$

(xiv) 152547201

By using long division method

12351	
1	152547201
	1
22	52
	44
243	854
	729
2465	12572
	12325
27701	24701
	24701
	0

: the square root of 152547201 $\sqrt{152547201} = 12351$

(**xv**) 20421361

By using long division method

4519	
4	20421361
	16
85	442
	425
901	1713
	901
9029	81261
	81261
	0

: the square root of 20421361 $\sqrt{20421361} = 4519$

(xvi) 62504836

By using long division method

	7906
7	62504836
	49
149	1350
	1341
1580	948
15806	94836
	94836
	0

: the square root of 62504836 $\sqrt{62504836} = 7906$

(xvii) 82264900

	9070
9	82264900
	81
180	126
1807	12649
	12649
14140	00
	0
	×

: the square root of 82264900 $\sqrt{82264900} = 9070$

(**xviii**) 3226694416 By using long division method

56804		
5	3226694416	
	25	
106	726	
	636	
1128	9069	
	9024	
11360	4544	
	0	
113604	454416	
	454416	
	×	

 \therefore the square root of 3226694416 $\sqrt{3226694416} = 56804$

(xix) 6407522209 By using long division method

	80047
8	6407522209
	64
160	07
	0
1600	752
	00
16004	75222
	64016
160087	1120609
	1120609
	×

 \therefore the square root of 6407522209 $\sqrt{6407522209} = 80047$

(xx) 3915380329

By using long division method

	62573
6	3915380329
	36
122	315
	244
1245	07138
	6225
12507	91303
	87549
125143	0375429
	375429
	×

 \therefore the square root of 3915380329 $\sqrt{3915380329} = 62573$

- 2. Find the least number which must be subtracted from the following numbers to make them a perfect square:
- (i) 2361
- (ii) 194491
- (iii) 26535
- (iv) 161605
- (v) 4401624

Solution:

(i) 2361

	48
4	2361
	16
88	761
	704
	57

∴ 57 has to be subtracted from 2361 to get a perfect square.

(ii) 194491

By using long division method

10	441
4	194491
***	16
84	344
	336
881	891
	881
	10

 \therefore 10 has to be subtracted from 194491 to get a perfect square.

(iii) 26535

By using long division method

	162	
1	26535	_
	1	
26	165	
	156	
322	935	_
	644	
	291	

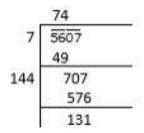
 \therefore 291 has to be subtracted from 26535 to get a perfect square.

(iv) 161605

402	
9	161605
	16
802	1605
	1604
	1

- \therefore 1 has to be subtracted from 161605 to get a perfect square.
- **(v)** 4401624

By using long division method


2098	
2	4401624
	4
40	40
	0
409	4016
	3681
4188	33524
	33504
	20

- \div 20 has to be subtracted from 4401624 to get a perfect square.
- 3. Find the least number which must be added to the following numbers to make them a perfect square:
- (i) 5607
- (ii)4931
- (iii) 4515600
- (iv) 37460
- (v) 506900

Solution:

(i) 5607

The remainder is 131

Since, $(74)^2 < 5607$

We take, the next perfect square number i.e., $(75)^2$

$$(75)^2 = 5625 > 5607$$

So, the number to be added = 5625 - 5607 = 18

(ii) 4931

By using long division method

The remainder is 31

Since, $(70)^2 < 4931$

We take, the next perfect square number i.e., $(71)^2$

$$(71)^2 = 5041 > 4931$$

So, the number to be added = 5041 - 4931 = 110

(iii) 4515600

	2124
2	4515600
	4
41	51
	41
422	1056
	844
4244	21200
	16976
	4224

The remainder is 4224

Since, $(2124)^2 < 4515600$

We take, the next perfect square number i.e., $(2125)^2$

 $(2125)^2 = 4515625 > 4515600$

So, the number to be added = 4515625 - 4515600 = 25

(iv) 37460

By using long division method

193		
1	37460	
	1	
29	274	
	261	
383	1360	
	1149	
	211	

The remainder is 211

Since, $(193)^2 < 37460$

We take, the next perfect square number i.e., $(194)^2$

$$(194)^2 = 37636 > 37460$$

So, the number to be added = 37636 - 37460 = 176

(v) 506900

By using long division method

711		
7	506900	
	49	
141	169	
	141	
1421	2800	
	1421	
	1379	

The remainder is 1379

Since, $(711)^2 < 506900$

We take, the next perfect square number i.e., $(712)^2$

 $(712)^2 = 506944 > 506900$

So, the number to be added = 506944 - 506900 = 44

4. Find the greatest number of 5 digits which is a perfect square. Solution:

We know that the greatest 5 digit number is 99999

By using long division method

•	316
3	99999
	9
61	99
	61
626	3899
	3766
	143

The remainder is 143

So, the greatest 5 digit perfect square number is:

$$99999 - 143 = 99856$$

: 99856 is the required greatest 5 digit perfect square number.

5. Find the least number of 4 digits which is a perfect square. Solution:

We know that the least 4 digit number is 1000

By using long division method

The remainder is 39

Since, $(31)^2 < 1000$

We take, the next perfect square number i.e., $(32)^2$

$$(32)^2 = 1024 > 1000$$

 \therefore 1024 is the required least number 4 digit number which is a perfect square.

6. Find the least number of six digits which is a perfect square. Solution:

We know that the least 6 digit number is 100000

	316
3	100000
	9
61	100
	61
626	3900
	3756
	144

The remainder is 144 Since, $(316)^2 < 100000$

We take, the next perfect square number i.e., $(317)^2$

 $(317)^2 = 100489 > 100000$

∴ 100489 is the required least number 6 digit number which is a perfect square.

7. Find the greatest number of 4 digits which is a perfect square. Solution:

We know that the greatest 4 digit number is 9999 By using long division method

	91
9	9999
	81
89	1899
	1701
	198

The remainder is 198

So, the greatest 4 digit perfect square number is:

9999 - 198 = 9801

∴ 9801 is the required greatest 4 digit perfect square number.

8. A General arranges his soldiers in rows to form a perfect square. He finds that in doing so, 60 soldiers are left out. If the total number of soldiers be 8160, find the number of soldiers in each row

Solution:

We know that the total number of soldiers = 8160

Number of soldiers left out = 60

Number of soldiers arranged in rows to form a perfect square = 8160 - 60 = 8100

∴ number of soldiers in each row =
$$\sqrt{8100}$$

= $\sqrt{(9 \times 9 \times 10 \times 10)}$
= 9×10
= 90

9. The area of a square field is 60025m². A man cycles along its boundary at 18 Km/hr. In how much time will he return at the starting point? Solution:

We know that the area of square field = 60025 m^2

Speed of cyclist = 18 km/h

$$= 18 \times (1000/60 \times 60)$$

= 5 m/s²

Area = 60025 m^2

 $Side^2 = 60025$

 $Side = \sqrt{60025}$

= 245

We know, Total length of boundary = $4 \times \text{Side}$

$$=4\times245$$

$$= 980 \text{ m}$$

 \therefore Time taken to return to the starting point = 980/5

= 196 seconds

= 3 minutes 16 seconds

10. The cost of levelling and turning a square lawn at Rs 2.50 per m² is Rs13322.50 Find the cost of fencing it at Rs 5 per metre. Solution:

We know that the cost of levelling and turning a square lawn = 2.50 per m²

Total cost of levelling and turning = Rs. 13322.50

Total area of square lawn = 13322.50/2.50

$$= 5329 \text{ m}^2$$

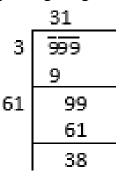
 $Side^2 = 5329$

Side of square lawn = $\sqrt{5329}$

$$= 73 \text{ m}$$

So, total length of lawn = 4×73

$$= 292 \text{ m}$$


∴ Cost of fencing the lawn at Rs 5 per metre = 292×5 = Rs. 1460

11. Find the greatest number of three digits which is a perfect square.

Solution:

We know that the greatest 3 digit number is 999 By using long division method

The remainder is 38

So, the greatest 3 digit perfect square number is:

$$999 - 38 = 961$$

∴ 961 is the required greatest 3 digit perfect square number.

12. Find the smallest number which must be added to 2300 so that it becomes a perfect square.

Solution:

By using long division method let's find the square root of 2300

The remainder is 91

Since, $(47)^2 < 2300$

We take, the next perfect square number i.e., $(48)^2$

$$(48)^2 = 2304 > 2300$$

: The smallest number required to be added to 2300 to get a perfect square is

$$2304 - 2300 = 4$$