

EXERCISE 7.7

P&GE NO: 7.27

Factorize each of the following algebraic expressions:
1. $x^2 + 12x - 45$
Solution:
We have,
$x^2 + 12x - 45$
To factorize the given expression we have to find two numbers p and q such that $p+q =$
12 and $pq = -45$
So we can replace $12x$ by $15x - 3x$
$-45 \text{ by } 15 \times 3$
$x^2 + 12x - 45 = x^2 + 15x - 3x - 45$
= x (x + 15) - 3 (x + 15)
= (x - 3) (x + 15)
2. $40 + 3x - x^2$
Solution:
We have,
$40 + 3x - x^2$
$-(x^2 - 3x - 40)$
By considering, $p+q = -3$ and $pq = -40$
So we can replace $-3x$ by $5x - 8x$
-40 by 5×-8
$-(x^2 - 3x - 40) = x^2 + 5x - 8x - 40$
= -x (x + 5) - 8 (x + 5)
= -(x - 8)(x + 5)
=(-x+8)(x+5)
$3. a^2 + 3a - 88$
Solution:
We have,
$a^2 + 3a - 88$
By considering, $p+q = 3$ and $pq = -88$
So we can replace $3a$ by $11a - 8a$
$-40 \text{ by } -11 \times 8$
$a^2 + 3a - 88 = a^2 + 11a - 8a - 88$
= a (a + 11) - 8 (a + 11)
=(a-8)(a+11)

4. a² – 14a – 51 Solution:

We have, $a^2 - 14a - 51$ By considering, p+q = -14 and pq = -51 So we can replace -14a by 3a - 17a -51 by -17 × 3 $a^2 - 14a - 51 = a^2 + 3a - 17a - 51$ = a (a + 3) - 17 (a + 3)= (a - 17) (a + 3)

5. $x^2 + 14x + 45$

Solution:

We have, $x^{2} + 14x + 45$ By considering, p+q = 14 and pq = 45 So we can replace 14x by 5x + 9x 45 by 5 × 9 $x^{2} + 14x + 45 = x^{2} + 5x + 9x + 45$ = x (x + 5) - 9 (x + 5)= (x + 9) (x + 5)

6. $x^2 - 22x + 120$ Solution:

We have, $x^2 - 22x + 120$ By considering, p+q = -22 and pq = 120So we can replace -22x by -12x - 10x 120 by -12×-10 $x^2 - 22x + 120 = x^2 - 12x - 10x + 120$ = x (x - 12) - 10 (x - 12)= (x - 10) (x - 12)

7. $x^2 - 11x - 42$ Solution:

We have, $x^2 - 11x - 42$ By considering, p+q = -11 and pq = -42So we can replace -11x by 3x - 14x

-42 by 3×-14 $x^2 - 11x - 42 = x^2 + 3x - 14x - 42$ = x (x + 3) - 14 (x + 3)= (x - 14) (x + 3)

8. $a^2 + 2a - 3$ Solution:

We have, $a^2 + 2a - 3$ By considering, p+q = 2 and pq = -3So we can replace 2a by 3a -a -3 by 3×-1 $a^2 + 2a - 3 = a^2 + 3a - a - 3$ = a (a + 3) - 1 (a + 3)= (a - 1) (a + 3)

9. $a^2 + 14a + 48$

Solution:

We have, $a^2 + 14a + 48$ By considering, p+q = 14 and pq = 48So we can replace 14a by 8a + 6a 48 by 8×6 $a^2 + 14a + 48 = a^2 + 8a + 6a + 48$ = a (a + 8) + 6 (a + 8)= (a + 6) (a + 8)

10. $x^2 - 4x - 21$ Solution:

We have, $x^2 - 4x - 21$ By considering, p+q = -4 and pq = -21 So we can replace -4x by 3x - 7x-21 by 3×-7 $x^2 + 4x - 21 = x^2 + 3x - 7x - 21$ = x (x + 3) - 7 (x + 3)= (x - 7) (x + 3)

11. $y^2 + 5y - 36$

Solution:

We have, $y^2 + 5y - 36$ By considering, p+q = 5 and pq = -36So we can replace 5y by 9y - 4y -36 by 9×-4 $y^2 + 5y - 36 = y^2 + 9y - 4y - 36$ = y (y + 9) - 4 (y + 9)= (y - 4) (y + 9)

12. $(a^2 - 5a)^2 - 36$ **Solution:** We have,

we have, $(a^2 - 5a)^2 - 36$ $(a^2 - 5a)^2 - 6^2$ By using the formula $(a^2 - b^2) = (a+b)$ (a-b) $(a^2 - 5a)^2 - 6^2 = (a^2 - 5a + 6)$ (a² - 5a - 6) So now we shall factorize the expression $(a^2 - 5a + 6)$ By considering, p+q = -5 and pq = 6 So we can replace -5a by a -6a 6 by 1×-6 $a^2 - 5a - 6 = a^2 + a - 6a - 6$ = a (a + 1) - 6(a + 1)= (a - 6) (a + 1)

So now we shall factorize the expression $(a^2 - 5a + 6)$ By considering, p+q = -5 and pq = -6 So we can replace -5a by -2a -3a 6 by -2×-3 $a^2 -5a + 6 = a^2 - 2a - 3a + 6$ = a (a - 2) -3 (a - 2)= (a - 3) (a - 2)

$$\therefore (a^2 - 5a)^2 - 36 = (a^2 - 5a + 6) (a^2 - 5a - 6)$$

= (a + 1) (a - 6) (a - 2) (a - 3)

13. (a + 7) (a – 10) + 16 **Solution:** We have,

(a + 7) (a - 10) + 16 $a^{2} - 10a + 7a - 70 + 16$ $a^{2} - 3a - 54$ By considering, p+q = -3 and pq = -54 So we can replace -3a by 6a - 9a -54 by 6 × -9 $a^{2} - 3a - 54 = a^{2} + 6a - 9a - 54$ = a (a + 6) -9 (a + 6)= (a - 9) (a + 6)

