Exercise 10.1 Page No: 10.12 Question 1: In figure, the sides BA and CA have been produced such that BA = AD and CA = AE. Prove that segment DE \parallel BC. #### Solution: Sides BA and CA have been produced such that BA = AD and CA = AE. To prove: DE || BC Consider \triangle BAC and \triangle DAE, BA = AD and CA= AE (Given) $\angle BAC = \angle DAE$ (vertically opposite angles) By SAS congruence criterion, we have \triangle BAC \simeq \triangle DAE We know, corresponding parts of congruent triangles are equal So, BC = DE and \angle DEA = \angle BCA, \angle EDA = \angle CBA Now, DE and BC are two lines intersected by a transversal DB s.t. ∠DEA=∠BCA (alternate angles are equal) Therefore, DE || BC. Proved. Question 2: In a PQR, if PQ = QR and L, M and N are the mid-points of the sides PQ, QR and RP respectively. Prove that LN = MN. ### **Solution:** Draw a figure based on given instruction, In \triangle PQR, PQ = QR and L, M, N are midpoints of the sides PQ, QP and RP respectively (Given) To prove : LN = MN As two sides of the triangle are equal, so △ PQR is an isosceles triangle $PQ = QR \text{ and } \angle QPR = \angle QRP \dots (i)$ Also, L and M are midpoints of PQ and QR respectively PL = LQ = QM = MR = QR/2 Now, consider Δ LPN and Δ MRN, LP = MR \angle LPN = \angle MRN [From (i)] \angle QPR = \angle LPN and \angle QRP = \angle MRN PN = NR [N is midpoint of PR] By SAS congruence criterion, Δ LPN \simeq Δ MRN We know, corresponding parts of congruent triangles are equal. So LN = MN Proved. Question 3: In figure, PQRS is a square and SRT is an equilateral triangle. Prove that (i) PT = QT (ii) \angle TQR = 15⁰ #### **Solution:** Given: PQRS is a square and SRT is an equilateral triangle. To prove: Now, ### PQRS is a square: PQ = QR = RS = SP (i) And $$\angle$$ SPQ = \angle PQR = \angle QRS = \angle RSP = 90° ### Also, \triangle SRT is an equilateral triangle: $$SR = RT = TS$$(ii) And $\angle TSR = \angle SRT = \angle RTS = 60^{\circ}$ From (i) and (ii) $$PQ = QR = SP = SR = RT = TS$$(iii) From figure, $$\angle TSP = \angle TSR + \angle RSP = 60^{\circ} + 90^{\circ} = 150^{\circ}$$ and $$\angle$$ TRQ = \angle TRS + \angle SRQ = 60° + 90° = 150° $$=> \angle TSR = \angle TRQ = 150^0$$(iv) By SAS congruence criterion, Δ TSP $\simeq \Delta$ TRQ We know, corresponding parts of congruent triangles are equal So, PT = QT Proved part (i). Now, consider Δ TQR. Δ TQR is an isosceles triangle. \angle QTR = \angle TQR [angles opposite to equal sides] Sum of angles in a triangle = 180° $$\Rightarrow$$ $\angle QTR + \angle TQR + \angle TRQ = 180^{\circ}$ $$=> 2 \angle TQR + 150^{\circ} = 180^{\circ}$$ [From (iv)] $$\Rightarrow$$ 2 \angle TQR = 30° $$=> \angle TQR = 15^{0}$$ Hence proved part (ii). Question 4: Prove that the medians of an equilateral triangle are equal. #### Solution: Consider an equilateral △ABC, and Let D, E, F are midpoints of BC, CA and AB. Here, AD, BE and CF are medians of \triangle ABC. Now, D is midpoint of BC => BD = DC Similarly, CE = EA and AF = FB Since $\triangle ABC$ is an equilateral triangle $$AB = BC = CA \qquad(i)$$ And also, \angle ABC = \angle BCA = \angle CAB = 60°(iii) Consider Δ ABD and Δ BCE $$AB = BC$$ [From (i)] $$\angle$$ ABD = \angle BCE [From (iii)] By SAS congruence criterion, $$\triangle$$ ABD \simeq \triangle BCE [Corresponding parts of congruent triangles are equal in measure] Now, consider Δ BCE and Δ CAF, $$BC = CA$$ [From (i)] $$\angle$$ BCE = \angle CAF [From (ii)] By SAS congruence criterion, $$\Delta$$ BCE $\simeq \Delta$ CAF [Corresponding parts of congruent triangles are equal] From (iv) and (v), we have $$AD = BE = CF$$ Median AD = Median BE = Median CF The medians of an equilateral triangle are equal. Hence proved Question 5: In a \triangle ABC, if \angle A = 120° and AB = AC. Find \angle B and \angle C. Solution: To find: \angle B and \angle C. Here, Δ ABC is an isosceles triangle since AB = AC [Angles opposite to equal sides are equal] We know, sum of angles in a triangle = 180° $$\angle A + \angle B + \angle C = 180^{\circ}$$ $$\angle$$ A + \angle B + \angle B= 180° (using (i) $$120^0 + 2\angle B = 180^0$$ $$2\angle B = 180^{\circ} - 120^{\circ} = 60^{\circ}$$ Therefore, \angle B = \angle C = 30° Question 6: In a \triangle ABC, if AB = AC and \angle B = 70°, find \angle A. ### **Solution:** Given: In a \triangle ABC, AB = AC and \angle B = 70° \angle B = \angle C [Angles opposite to equal sides are equal] Therefore, \angle B = \angle C = 70° Sum of angles in a triangle = 180° $$\angle A + \angle B + \angle C = 180^{\circ}$$ $$\angle A + 70^{\circ} + 70^{\circ} = 180^{\circ}$$ $$\angle A = 180^{\circ} - 140^{\circ}$$