

Exercise 10.1

Page No: 10.12

Question 1: In figure, the sides BA and CA have been produced such that BA = AD and CA = AE. Prove that segment DE \parallel BC.

Solution:

Sides BA and CA have been produced such that BA = AD and CA = AE.

To prove: DE || BC

Consider \triangle BAC and \triangle DAE,

BA = AD and CA= AE (Given)

 $\angle BAC = \angle DAE$ (vertically opposite angles)

By SAS congruence criterion, we have

 \triangle BAC \simeq \triangle DAE

We know, corresponding parts of congruent triangles are equal

So, BC = DE and \angle DEA = \angle BCA, \angle EDA = \angle CBA

Now, DE and BC are two lines intersected by a transversal DB s.t. ∠DEA=∠BCA (alternate angles are equal)

Therefore, DE || BC. Proved.

Question 2: In a PQR, if PQ = QR and L, M and N are the mid-points of the sides PQ, QR and RP respectively. Prove that LN = MN.

Solution:

Draw a figure based on given instruction,

In \triangle PQR, PQ = QR and L, M, N are midpoints of the sides PQ, QP and RP respectively (Given)

To prove : LN = MN

As two sides of the triangle are equal, so △ PQR is an isosceles triangle

 $PQ = QR \text{ and } \angle QPR = \angle QRP \dots (i)$

Also, L and M are midpoints of PQ and QR respectively

PL = LQ = QM = MR = QR/2

Now, consider Δ LPN and Δ MRN,

LP = MR

 \angle LPN = \angle MRN [From (i)]

 \angle QPR = \angle LPN and \angle QRP = \angle MRN

PN = NR [N is midpoint of PR]

By SAS congruence criterion, Δ LPN \simeq Δ MRN

We know, corresponding parts of congruent triangles are equal.

So LN = MN Proved.

Question 3: In figure, PQRS is a square and SRT is an equilateral triangle. Prove that (i) PT = QT (ii) \angle TQR = 15⁰

Solution:

Given: PQRS is a square and SRT is an equilateral triangle.

To prove:

Now,

PQRS is a square:

PQ = QR = RS = SP (i)
And
$$\angle$$
 SPQ = \angle PQR = \angle QRS = \angle RSP = 90°

Also, \triangle SRT is an equilateral triangle:

$$SR = RT = TS$$
(ii)
And $\angle TSR = \angle SRT = \angle RTS = 60^{\circ}$

From (i) and (ii)

$$PQ = QR = SP = SR = RT = TS$$
(iii)

From figure,

$$\angle TSP = \angle TSR + \angle RSP = 60^{\circ} + 90^{\circ} = 150^{\circ}$$
 and

$$\angle$$
TRQ = \angle TRS + \angle SRQ = 60° + 90° = 150°

$$=> \angle TSR = \angle TRQ = 150^0$$
(iv)

By SAS congruence criterion, Δ TSP $\simeq \Delta$ TRQ

We know, corresponding parts of congruent triangles are equal So, PT = QT

Proved part (i).

Now, consider Δ TQR.

Δ TQR is an isosceles triangle.

 \angle QTR = \angle TQR [angles opposite to equal sides]

Sum of angles in a triangle = 180°

$$\Rightarrow$$
 $\angle QTR + \angle TQR + \angle TRQ = 180^{\circ}$

$$=> 2 \angle TQR + 150^{\circ} = 180^{\circ}$$
 [From (iv)]

$$\Rightarrow$$
 2 \angle TQR = 30°

$$=> \angle TQR = 15^{0}$$

Hence proved part (ii).

Question 4: Prove that the medians of an equilateral triangle are equal.

Solution:

Consider an equilateral △ABC, and Let D, E, F are midpoints of BC, CA and AB.

Here, AD, BE and CF are medians of \triangle ABC.

Now,

D is midpoint of BC => BD = DC

Similarly, CE = EA and AF = FB

Since $\triangle ABC$ is an equilateral triangle

$$AB = BC = CA \qquad(i)$$

And also, \angle ABC = \angle BCA = \angle CAB = 60°(iii)

Consider Δ ABD and Δ BCE

$$AB = BC$$
 [From (i)]

$$\angle$$
 ABD = \angle BCE [From (iii)]

By SAS congruence criterion,

$$\triangle$$
 ABD \simeq \triangle BCE

[Corresponding parts of congruent triangles are equal in measure]

Now, consider Δ BCE and Δ CAF,

$$BC = CA$$
 [From (i)]

$$\angle$$
 BCE = \angle CAF [From (ii)]

By SAS congruence criterion,

$$\Delta$$
 BCE $\simeq \Delta$ CAF

[Corresponding parts of congruent triangles are equal]

From (iv) and (v), we have

$$AD = BE = CF$$

Median AD = Median BE = Median CF

The medians of an equilateral triangle are equal.

Hence proved

Question 5: In a \triangle ABC, if \angle A = 120° and AB = AC. Find \angle B and \angle C. Solution:

To find: \angle B and \angle C.

Here, Δ ABC is an isosceles triangle since AB = AC

[Angles opposite to equal sides are equal]

We know, sum of angles in a triangle = 180°

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\angle$$
 A + \angle B + \angle B= 180° (using (i)

$$120^0 + 2\angle B = 180^0$$

$$2\angle B = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

Therefore, \angle B = \angle C = 30°

Question 6: In a \triangle ABC, if AB = AC and \angle B = 70°, find \angle A.

Solution:

Given: In a \triangle ABC, AB = AC and \angle B = 70°

 \angle B = \angle C [Angles opposite to equal sides are equal]

Therefore, \angle B = \angle C = 70°

Sum of angles in a triangle = 180°

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\angle A + 70^{\circ} + 70^{\circ} = 180^{\circ}$$

$$\angle A = 180^{\circ} - 140^{\circ}$$