Exercise 10.2 Page No: 10.21 Question 1: In figure, it is given that RT = TS, \angle 1 = 2 \angle 2 and \angle 4 = 2(\angle 3). Prove that \triangle RBT \cong \triangle SAT. #### **Solution:** In the figure, $$\angle 1 = 2 \angle 2$$(ii) And $$\angle 4 = 2 \angle 3$$(iii) To prove: $\triangle RBT \cong \triangle SAT$ Let the point of intersection RB and SA be denoted by O $$\angle$$ AOR = \angle BOS [Vertically opposite angles] or $$\angle 1 = \angle 4$$ $$2 \angle 2 = 2 \angle 3$$ [From (ii) and (iii)] or $$\angle 2 = \angle 3$$(iv) Now in Δ TRS, we have RT = TS => Δ TRS is an isosceles triangle $$\angle$$ TRS = \angle TSR(v) But, $$\angle$$ TRS = \angle TRB + \angle 2(vi) $$\angle TSR = \angle TSA + \angle 3$$(vii) Putting (vi) and (vii) in (v) we get $$\angle$$ TRB + \angle 2 = \angle TSA + \angle B $$\Rightarrow$$ \angle TRB \Rightarrow \angle TSA [From (iv)] Consider Δ RBT and Δ SAT $$RT = ST$$ [From (i)] $$\angle$$ TRB = \angle TSA [From (iv)] By ASA criterion of congruence, we have \triangle RBT \cong \triangle SAT Question 2: Two lines AB and CD intersect at O such that BC is equal and parallel to AD. Prove that the lines AB and CD bisect at O. Solution: Lines AB and CD Intersect at O Such that BC || AD and $$BC = AD \dots(i)$$ To prove : AB and CD bisect at O. First we have to prove that \triangle AOD \cong \triangle BOC \angle OCB = \angle ODA [AD||BC and CD is transversal] AD = BC [from (i)] $\angle OBC = \angle OAD$ [AD] BC and AB is transversal] By ASA Criterion: \triangle AOD \cong \triangle BOC OA = OB and OD = OC (By c.p.c.t.) Therefore, AB and CD bisect each other at O. Hence Proved. Question 3: BD and CE are bisectors of \angle B and \angle C of an isosceles \triangle ABC with AB = AC. Prove that BD = CE. #### **Solution:** \triangle ABC is isosceles with AB = AC and BD and CE are bisectors of \angle B and \angle C We have to prove BD = CE. (Given) Since AB = AC [Angles opposite to equal sides are equal] Since BD and CE are bisectors of \angle B and \angle C $$\angle$$ ABD = \angle DBC = \angle BCE = ECA = \angle B/2 = \angle C/2 ...(ii) Now, Consider \triangle EBC = \triangle DCB \angle EBC = \angle DCB [From (i)] BC = BC [Common side] \angle BCE = \angle CBD [From (ii)] By ASA congruence criterion, Δ EBC $\cong \Delta$ DCB Since corresponding parts of congruent triangles are equal. => CE = BD or, BD = CE Hence proved.