

Exercise 10.2

Page No: 10.21

Question 1: In figure, it is given that RT = TS, \angle 1 = 2 \angle 2 and \angle 4 = 2(\angle 3). Prove that \triangle RBT \cong \triangle SAT.

Solution:

In the figure,

$$\angle 1 = 2 \angle 2$$
(ii)

And
$$\angle 4 = 2 \angle 3$$
(iii)

To prove: $\triangle RBT \cong \triangle SAT$

Let the point of intersection RB and SA be denoted by O

$$\angle$$
 AOR = \angle BOS [Vertically opposite angles]

or
$$\angle 1 = \angle 4$$

$$2 \angle 2 = 2 \angle 3$$
 [From (ii) and (iii)]

or
$$\angle 2 = \angle 3$$
(iv)

Now in Δ TRS, we have RT = TS

=> Δ TRS is an isosceles triangle

$$\angle$$
 TRS = \angle TSR(v)

But,
$$\angle$$
 TRS = \angle TRB + \angle 2(vi)

$$\angle TSR = \angle TSA + \angle 3$$
(vii)

Putting (vi) and (vii) in (v) we get

$$\angle$$
 TRB + \angle 2 = \angle TSA + \angle B

$$\Rightarrow$$
 \angle TRB \Rightarrow \angle TSA [From (iv)]

Consider Δ RBT and Δ SAT

$$RT = ST$$
 [From (i)]

$$\angle$$
 TRB = \angle TSA [From (iv)]

By ASA criterion of congruence, we have

 \triangle RBT \cong \triangle SAT

Question 2: Two lines AB and CD intersect at O such that BC is equal and parallel to AD. Prove that the lines AB and CD bisect at O.

Solution: Lines AB and CD Intersect at O

Such that BC || AD and

$$BC = AD \dots(i)$$

To prove : AB and CD bisect at O.

First we have to prove that \triangle AOD \cong \triangle BOC

 \angle OCB = \angle ODA [AD||BC and CD is transversal]

AD = BC [from (i)]

 $\angle OBC = \angle OAD$ [AD] BC and AB is transversal]

By ASA Criterion: \triangle AOD \cong \triangle BOC

OA = OB and OD = OC (By c.p.c.t.)

Therefore, AB and CD bisect each other at O.

Hence Proved.

Question 3: BD and CE are bisectors of \angle B and \angle C of an isosceles \triangle ABC with AB = AC. Prove that BD = CE.

Solution:

 \triangle ABC is isosceles with AB = AC and BD and CE are bisectors of \angle B and \angle C We have to prove BD = CE. (Given)

Since AB = AC

[Angles opposite to equal sides are equal]

Since BD and CE are bisectors of \angle B and \angle C

$$\angle$$
 ABD = \angle DBC = \angle BCE = ECA = \angle B/2 = \angle C/2 ...(ii)

Now, Consider \triangle EBC = \triangle DCB

 \angle EBC = \angle DCB [From (i)]

BC = BC [Common side]

 \angle BCE = \angle CBD [From (ii)]

By ASA congruence criterion, Δ EBC $\cong \Delta$ DCB

Since corresponding parts of congruent triangles are equal.

=> CE = BD

or, BD = CE

Hence proved.