

Exercise 10.3

Page No: 10.38

Question 1: In two right triangles one side an acute angle of one are equal to the corresponding side and angle of the other. Prove that the triangles are congruent.

Solution:

In two right triangles one side and acute angle of one are equal to the corresponding side and angles of the other. (Given)

To prove: Both the triangles are congruent.

Consider two right triangles such that

$$\angle$$
 B = \angle E = 90°

$$AB = DE$$

$$\angle C = \angle F$$

Here we have two right triangles, \triangle ABC and \triangle DEF

From (i), (ii) and (iii),

By AAS congruence criterion, we have Δ ABC $\cong \Delta$ DEF

Both the triangles are congruent. Hence proved.

Question 2: If the bisector of the exterior vertical angle of a triangle be parallel to the base. Show that the triangle is isosceles.

Solution:

Let ABC be a triangle such that AD is the angular bisector of exterior vertical angle, ∠EAC and AD || BC.

From figure,

$$\angle 1 = \angle 2$$
 [AD is a bisector of \angle EAC]

$$\angle 1 = \angle 3$$
 [Corresponding angles]

and
$$\angle 2 = \angle 4$$
 [alternative angle]

From above, we have $\angle 3 = \angle 4$

This implies, AB = AC

Two sides AB and AC are equal.

 $=> \Delta$ ABC is an isosceles triangle.

Question 3: In an isosceles triangle, if the vertex angle is twice the sum of the base angles, calculate the angles of the triangle.

Solution:

Let \triangle ABC be isosceles where AB = AC and \angle B = \angle C

Given: Vertex angle A is twice the sum of the base angles B and C. i.e., \angle A = 2(\angle B + \angle C)

$$\angle A = 2(\angle B + \angle B)$$

$$\angle A = 2(2 \angle B)$$

$$\angle A = 4(\angle B)$$

Now, We know that sum of angles in a triangle =180°

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$4 \angle B + \angle B + \angle B = 180^{\circ}$$

$$\angle$$
 B = 30°

Since,
$$\angle B = \angle C$$

$$\angle$$
 B = \angle C = 30°

And
$$\angle A = 4 \angle B$$

$$\angle A = 4 \times 30^{\circ} = 120^{\circ}$$

Therefore, angles of the given triangle are 30° and 30° and 120°.

Question 4: PQR is a triangle in which PQ = PR and is any point on the side PQ. Through S, a line is drawn parallel to QR and intersecting PR at T. Prove that PS = PT.

Solution: Given that PQR is a triangle such that PQ = PR and S is any point on the side PQ and ST || QR.

To prove: PS = PT

Since, PQ= PR, so \triangle PQR is an isosceles triangle.

$$\angle$$
 PQR = \angle PRQ

Now, \angle PST = \angle PQR and \angle PTS = \angle PRQ [Corresponding angles as ST parallel to QR]

Since, \angle PQR = \angle PRQ

 \angle PST = \angle PTS

In \triangle PST, \angle PST = \angle PTS

 Δ PST is an isosceles triangle.

Therefore, PS = PT.

Hence proved.