RD Sharma Solutions for Class 9 Maths Chapter 10 Congruent Triangles

Exercise 10.4

Question 1: In figure, It is given that $A B=C D$ and $A D=B C$. Prove that $\triangle A D C \cong \triangle C B A$.

Solution:

From figure, $A B=C D$ and $A D=B C$.

To prove: $\triangle \mathrm{ADC} \cong \triangle \mathrm{CBA}$
Consider $\triangle \mathrm{ADC}$ and $\triangle \mathrm{CBA}$.
$A B=C D$
[Given]
$B C=A D$
[Given]
And $A C=A C$
[Common side]
So, by SSS congruence criterion, we have
$\triangle \mathrm{ADC} \cong \triangle C B A$

Hence proved.
Question 2: In a $\triangle P Q R$, if $P Q=Q R$ and L, M and N are the mid-points of the sides $P Q, Q R$ and $R P$ respectively. Prove that $\mathrm{LN}=\mathrm{MN}$.

Solution:

Given: $\ln \triangle P Q R, P Q=Q R$ and L, M and N are the mid-points of the sides $P Q, Q R$ and $R P$ respectively
To prove: $\mathrm{LN}=\mathrm{MN}$

Join L and M, M and N, N and L
We have $P L=L Q, Q M=M R$ and $R N=N P$
[Since, L, M and N are mid-points of PQ, QR and RP respectively]
And also $P Q=Q R$
$\mathrm{PL}=\mathrm{LQ}=\mathrm{QM}=\mathrm{MR}=\mathrm{PN}=\mathrm{LR}$
[Using mid-point theorem]
$\mathrm{MN} \| \mathrm{PQ}$ and $\mathrm{MN}=\mathrm{PQ} / 2$
$\mathrm{MN}=\mathrm{PL}=\mathrm{LQ}$

Similarly, we have
$L N \| Q R$ and $L N=(1 / 2) Q R$
$\mathrm{LN}=\mathrm{QM}=\mathrm{MR}$
From equation (i), (ii) and (iii), we have
$P L=L Q=Q M=M R=M N=L N$
This implies, $\mathrm{LN}=\mathrm{MN}$
Hence Proved.

