

Exercise VSAQs

Page No: 14.62

Question 1: In a parallelogram ABCD, write the sum of angles A and B.

Solution:

In parallelogram ABCD, Adjacent angles of a parallelogram are supplementary.

Therefore, $\angle A + \angle B = 180^{\circ}$

Question 2: In a parallelogram ABCD, if $\angle D = 115^{\circ}$, then write the measure of $\angle A$. Solution:

In a parallelogram ABCD, ∠D = 115° (Given)

Since, ∠A and ∠D are adjacent angles of parallelogram.

We know, Adjacent angles of a parallelogram are supplementary.

 $\angle A + \angle D = 180^{\circ}$

 $\angle A = 180^{\circ} - 115^{\circ} = 65^{\circ}$

Measure of $\angle A$ is 65°.

Question 3: PQRS is a square such that PR and SQ intersect at O. State the measure of ∠POQ.

Solution:

PQRS is a square such that PR and SQ intersect at O. (Given)

We know, diagonals of a square bisects each other at 90 degrees.

So, $\angle POQ = 90^{\circ}$

Question 4: In a quadrilateral ABCD, bisectors of angles A and B intersect at O such that \angle AOB = 75°, then write the value of \angle C + \angle D.

Solution:

$$\angle AOB = 75^{\circ}$$
 (given)

In a quadrilateral ABCD, bisectors of angles A and B intersect at O, then

$$\angle AOB = 1/2 (\angle ADC + \angle ABC)$$

or
$$\angle AOB = 1/2 (\angle D + \angle C)$$

By substituting given values, we get

$$75^{\circ} = 1/2 (\angle D + \angle C)$$

or
$$\angle C + \angle D = 150^{\circ}$$

Question 5: The diagonals of a rectangle ABCD meet at O. If \angle BOC = 44°, find \angle OAD.

Solution:

ABCD is a rectangle and $\angle BOC = 44^{\circ}$ (given)

 $\angle AOD = \angle BOC$ (vertically opposite angles)

$$\angle AOD = \angle BOC = 44^{\circ}$$

 $\angle OAD = \angle ODA$ (Angles facing same side)

and OD = OA

Since sum of all the angles of a triangle is 180°, then

So,
$$\angle$$
OAD = 1/2 (180 $^{\circ}$ - 44 $^{\circ}$) = 68 $^{\circ}$

Question 6: If PQRS is a square, then write the measure of \angle SRP.

Solution:

PQRS is a square.

=> All side are equal, and each angle is 90° degrees and diagonals bisect the angles.

So,
$$\angle$$
SRP = 1/2 (90 °) = 45°

Question 7: If ABCD is a rectangle with $\angle BAC = 32^{\circ}$, find the measure of $\angle DBC$.

Solution:

ABCD is a rectangle and ∠BAC=32° (given)

We know, diagonals of a rectangle bisects each other.

AO = BO

 $\angle DBA = \angle BAC = 32^{\circ}$ (Angles facing same side)

Each angle of a rectangle = 90 degrees

So, $\angle DBC + \angle DBA = 90^{\circ}$

or ∠DBC + 32° = 90°

or ∠DBC = 58°

Question 8: If ABCD is a rhombus with \angle ABC = 56°, find the measure of \angle ACD.

Solution:

In a rhombus ABCD,

<ABC = 56°

So, <BCD = 2 (<ACD) (Diagonals of a rhombus bisect the interior angles)

or <ACD = 1/2 (<BCD)(1)

We know, consecutive angles of a rhombus are supplementary.

∠BCD + ∠ABC = 180°

 $\angle BCD = 180^{\circ} - 56^{\circ} = 124^{\circ}$

Equation (1) => <ACD = $1/2 \times 124^{\circ} = 62^{\circ}$

Question 9: The perimeter of a parallelogram is 22 cm. If the longer side measure 6.5 cm, what is the measure of shorter side?

Solution:

Perimeter of a parallelogram = 22 cm. (Given)

Longer side = 6.5 cm

Let x be the shorter side.

Perimeter = $2x + 2 \times 6.5$

22 = 2x + 13

2x = 22 - 13 = 9

or x = 4.5

Measure of shorter side is 4.5 cm.

Question 10: If the angles of a quadrilateral are in the ratio 3:5:9:13, then find the measure of the smallest angle.

Solution:

Angles of a quadrilateral are in the ratio 3:5:9:13 (Given)

Let the sides are 3x, 5x, 9x, 13x

We know, sum of all the angles of a quadrilateral = 360°

$$3x + 5x + 9x + 13x = 360^{\circ}$$

30 x = 360 °

 $x = 12^{\circ}$

Length of smallest angle = $3x = 3(12) = 36^{\circ}$.