Exercise VSAQs

Question 1: In a parallelogram ABCD, write the sum of angles A and B.

Solution:
In parallelogram ABCD, adjacent angles of a parallelogram are supplementary.

Therefore, \(\angle A + \angle B = 180^\circ \)

Question 2: In a parallelogram ABCD, if \(\angle D = 115^\circ \), then write the measure of \(\angle A \).

Solution:
In a parallelogram ABCD,
\(\angle D = 115^\circ \) (Given)

Since, \(\angle A \) and \(\angle D \) are adjacent angles of parallelogram.

We know, adjacent angles of a parallelogram are supplementary.

\(\angle A + \angle D = 180^\circ \)
\(\angle A = 180^\circ - 115^\circ = 65^\circ \)

Measure of \(\angle A \) is 65°.

Question 3: PQRS is a square such that PR and SQ intersect at O. State the measure of \(\angle POQ \).

Solution:
PQRS is a square such that PR and SQ intersect at O. (Given)

We know, diagonals of a square bisect each other at 90 degrees.

So, \(\angle POQ = 90^\circ \)

Question 4: In a quadrilateral ABCD, bisectors of angles A and B intersect at O such that \(\angle AOB = 75^\circ \), then write the value of \(\angle C + \angle D \).

Solution:
\(\angle AOB = 75^\circ \) (given)
In a quadrilateral ABCD, bisectors of angles A and B intersect at O, then

\[\angle AOB = \frac{1}{2} (\angle ADC + \angle ABC) \]

or \[\angle AOB = \frac{1}{2} (\angle D + \angle C) \]

By substituting given values, we get

\[75^\circ = \frac{1}{2} (\angle D + \angle C) \]

or \[\angle C + \angle D = 150^\circ \]

Question 5: The diagonals of a rectangle ABCD meet at O. If \(\angle BOC = 44^\circ \), find \(\angle OAD \).

Solution:

ABCD is a rectangle and \(\angle BOC = 44^\circ \) (given)

\(\angle AOD = \angle BOC \) (vertically opposite angles)

\(\angle AOD = \angle BOC = 44^\circ \)

\(\angle OAD = \angle ODA \) (Angles facing same side)

and OD = OA

Since sum of all the angles of a triangle is 180°, then

So, \(\angle OAD = \frac{1}{2} (180^\circ - 44^\circ) = 68^\circ \)

Question 6: If PQRS is a square, then write the measure of \(\angle SRP \).

Solution:

PQRS is a square.

=> All side are equal, and each angle is 90° degrees and diagonals bisect the angles.

So, \(\angle SRP = \frac{1}{2} (90^\circ) = 45^\circ \)

Question 7: If ABCD is a rectangle with \(\angle BAC = 32^\circ \), find the measure of \(\angle DBC \).

Solution:

ABCD is a rectangle and \(\angle BAC = 32^\circ \) (given)
We know, diagonals of a rectangle bisects each other.
\[AO = BO \]

\[\angle DBA = \angle BAC = 32^\circ \] (Angles facing same side)

Each angle of a rectangle = 90 degrees

So, \[\angle DBC + \angle DBA = 90^\circ \]

or \[\angle DBC + 32^\circ = 90^\circ \]

or \[\angle DBC = 58^\circ \]

Question 8: If ABCD is a rhombus with \(\angle ABC = 56^\circ \), find the measure of \(\angle ACD \).

Solution:

In a rhombus ABCD,
\[\angle ABC = 56^\circ \]

So, \[\angle BCD = 2 (\angle ACD) \] (Diagonals of a rhombus bisect the interior angles)

or \[\angle ACD = 1/2 (\angle BCD) \](1)

We know, consecutive angles of a rhombus are supplementary.

\[\angle BCD + \angle ABC = 180^\circ \]

\[\angle BCD = 180^\circ - 56^\circ = 124^\circ \]

Equation (1) => \[\angle ACD = 1/2 x 124^\circ = 62^\circ \]

Question 9: The perimeter of a parallelogram is 22 cm. If the longer side measure 6.5 cm, what is the measure of shorter side?

Solution:

Perimeter of a parallelogram = 22 cm. (Given)

Longer side = 6.5 cm

Let \(x \) be the shorter side.

Perimeter = \(2x + 2 \times 6.5 \)

\[22 = 2x + 13 \]

\[2x = 22 - 13 = 9 \]

or \(x = 4.5 \)

Measure of shorter side is 4.5 cm.
Question 10: If the angles of a quadrilateral are in the ratio 3:5:9:13, then find the measure of the smallest angle.

Solution:

Angles of a quadrilateral are in the ratio 3 : 5 : 9 : 13 (Given)

Let the sides are 3x, 5x, 9x, 13x

We know, sum of all the angles of a quadrilateral = 360°

3x + 5x + 9x + 13x = 360°

30x = 360°

x = 12°

Length of smallest angle = 3x = 3(12) = 36°.