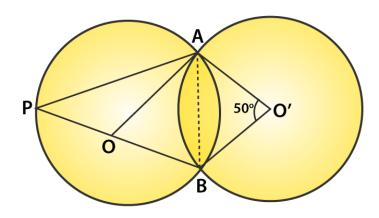

Exercise VSAQs

Page No: 16.89

Question 1: In figure, two circles intersect at A and B. The centre of the smaller circle is O and it lies on the circumference of the larger circle. If $\angle APB = 70^{\circ}$, find $\angle ACB$.



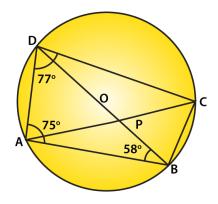
Solution:

By degree measure theorem: $\angle AOB = 2 \angle APB$ so, $\angle AOB = 2 \times 70^{\circ} = 140^{\circ}$

Since AOBC is a cyclic quadrilateral, we have \angle ACB + \angle AOB = 180° \angle ACB + 140° = 180° \angle ACB = 40°

Question 2: In figure, two congruent circles with centres O and O' intersect at A and B. If $\angle AO'B = 50^{\circ}$, then find $\angle APB$.

Solution:


RD Sharma Solutions for Class 9 Maths Chapter 16 Circles

As we are given that, both the triangle are congruent which means their corresponding angles are equal.

Therefore, $\angle AOB = AO'B = 50^{\circ}$

Now, by degree measure theorem, we have $\angle APB = \angle AOB/2 = 25^{\circ}$

Question 3: In figure, ABCD is a cyclic quadrilateral in which \angle BAD=75°, \angle ABD=58° and \angle ADC=77°, AC and BD intersect at P. Then, find \angle DPC.

Solution:

 \angle DBA = \angle DCA = 58^0 ...(1) [Angles in same segment]

ABCD is a cyclic quadrilateral:

Sum of opposite angles = 180 degrees

 $\angle A + \angle C = 180^{\circ}$

 $75^{\circ} + \angle C = 180^{\circ}$

 $\angle C = 105^{\circ}$

Again, \angle ACB + \angle ACD = 105 $^{\circ}$

 $\angle ACB + 58^0 = 105^0$

or $\angle ACB = 47^0$...(2)

Now, $\angle ACB = \angle ADB = 47^{\circ}$

[Angles in same segment]

Also, $\angle D = 77^0$ (Given)

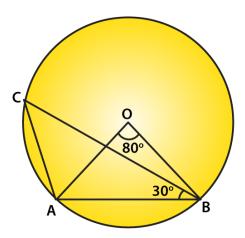
Again From figure, \angle BDC + \angle ADB = 77⁰

 $\angle BDC + 47^0 = 77^0$

 $\angle BDC = 30^{\circ}$

In triangle DPC

 $\angle PDC + \angle DCP + \angle DPC = 180^{\circ}$


 $30^{\circ} + 58^{\circ} + \angle DPC = 180^{\circ}$

or $\angle DPC = 92^{\circ}$. Answer!!

RD Sharma Solutions for Class 9 Maths Chapter 16 Circles

Question 4: In figure, if \angle AOB = 80° and \angle ABC=30°, then find \angle CAO.

Solution:

Given: $\angle AOB = 80^{\circ}$ and $\angle ABC = 30^{\circ}$

To find: ∠CAO

Join OC.

Central angle subtended by arc AC = \angle COA then \angle COA = 2 x \angle ABC = 2 x 30 $^{\circ}$ = 60 $^{\circ}$...(1)

In triangle OCA,
OC = OA
[same radii]
∠OCA = ∠CAO ...(2)
[Angle opposite to equal sides]

In triangle COA,

$$\angle$$
OCA + \angle CAO + \angle COA = 180 $^{\circ}$

From (1) and (2), we get

$$2\angle CAO + 60^{0} = 180^{0}$$

$$\angle$$
CAO = 60°