RD Sharma Solutions for Class 9 Maths Chapter 17 Construction

Exercise 17.1

Question 1: Draw a line segment of length 8.6 cm . Bisect it and measure the length of each part.

Solution:

Step 1: Draw a line segment $A B=8.6 \mathrm{~cm}$.
Step 2: Draw arcs on each side of $A B$ using A as a center at any radius more than half of 8.6.
Step 3: Repeat Step 2 using B as a center and make sure these arcs cut the previous arcs.
Step 4: Join the points P and Q which intersects $A B$ at M.
Therefore $A M=M B=4.3 \mathrm{~cm}$

Question 2: Draw a line segment $A B$ of length 5.8 cm . Draw the perpendicular bisector of this line segment.

Solution:

Step 1: Draw a line segment $A B=5.8 \mathrm{~cm}$.
Step 2: Draw arcs on each side of $A B$ using A as a center at any radius more than half of 5.8.
Step 3: Repeat Step 2 using B as a center and make sure these arcs cut the previous arcs.
Step 4: Join the points P and Q .

Here, $P Q$ is the perpendicular bisector of $A B$.
Question 3: Draw a circle with center at point O and radius 5 cm . Draw its chord $A B$, the perpendicular bisector of line segment $A B$. Does it pass through the center of the circle?

Solution:

Step 1: Draw a circle choosing radius 5 cm and point O as center.
Step 2: Draw a chord AB using scale.
Step 3: Draw arcs one on each side of chord chossing A as center and radius more than half of 5 cm .
Step 4: Repeat step 3 using B as a centre and make sure these arcs cut the previous arcs.
Step 5: Join P and Q.

Therefore PQ is a perpendicular bisector of chord AB passes through the center of the circle.

RD Sharma Solutions for Class 9 Maths Chapter 17 Construction

Exercise 17.2

Question 1: Draw an angle and label it as $\angle B A C$. Construct another angle, equal to $\angle B A C$.

Solution:

Steps of construction:
Step 1: Draw any angle ABC.
Now will construct an angle equal to $\angle B A C$
Step 2: Draw a line segment QR.
Step 3: Draw an arc which intersects $\angle B A C$ at E and D using A as center and choose any radius.
Step 4: With same measurements (set in step 2), Draw an arc from point Q .
Step 5: With S as center and radius equal to $D E$, draw an arc which intersects the previous arc at T.
Step 6: Join Q and T.

Therefore $\angle P Q R=\angle B A C$

Question 2: Draw an obtuse angle. Bisect it. Measure each of the angles so formed.

Solution:

Steps of construction:
Step 1: Draw an obtuse angle. We choose $\angle A B C=120^{\circ}$.
Step 2: Draw an arc which intersects $A B$ at P and $B C$ at Q, from center B and choose any radius.
Step 3: Draw an arc from point P by setting radius more than half of $P Q$.
Step 4: Repeat step 3 using Q as center and cut the previous arc at R.

Step 5: Join BR.

Therefore $\angle A B R=\angle R B C=60^{\circ}$

Question 3: Using your protractor, draw an angle of 108°. With this given angle as given, draw an angle of 54°.

Solution:

Steps of construction:
Step 1: Draw $\angle A B C=108^{\circ}$.
Step 2: Draw an arc which intersects $A B$ at P and $B C$ at Q from point B. (Choose any radius)
Step 3: Draw an arc from point P by setting radius more than half of $P Q$.
Step 4: Repeat Step 3 using Q as the centre and intersect the previous arc at R.
Step 5: Join BR.
Therefore $\angle R B C=54^{\circ}$

Question 4: Using the protractor, draw a right angle. Bisect it to get an angle of measure 45°.

Solution:

Steps of construction:
Step 1: Draw $\angle A B C=90^{\circ}$.
Step 2: Draw an arc which intersects $A B$ at P and $B C$ at Q from point B. (Choose any radius)
Step 3: Draw an arc from point P by setting radius more than half of $P Q$.
Step 4: Repeat step 3 using Q as a centre and intersect the previous arc at R.
Step 5: Join RB.
Therefore $\angle R B C=45^{\circ}$

Exercise 17.3

Question 1: Construct a $\triangle A B C$ in which $B C=3.6 \mathrm{~cm}, A B+A C=4.8 \mathrm{~cm}$ and $\angle B=60^{\circ}$. Solution:

Steps of Construction:
Step 1: Draw a line segment $B C=3.6 \mathrm{~cm}$.
Step 2: At the point B, draw $\angle X B C=60^{\circ}$.
Step 3: Draw an arc which intersects $X B$ at point D form point B and with radius 4.8 cm
Step 4: Join DC.
Step 5: Draw a perpendicular bisector of DC which intersects DB at A.
Step 6: Join AC.
Hence, $\triangle A B C$ is the required triangle.

Question 2: Construct a $\triangle A B C$ in which $A B+A C=5.6 \mathrm{~cm}, B C=4.5 \mathrm{~cm}$ and $\angle B=45^{\circ}$.

Solution:

Steps of Construction:
Step 1: Draw a line segment $B C=4.5 \mathrm{~cm}$.
Step 2: At the point B, draw $\angle X B C=45^{\circ}$.
Step 3: Draw an arc which intersects $X B$ at point D form point B and with radius 5.6 cm
Step 4: Join DC.
Step 5: Draw a perpendicular bisector of DC which intersects DB at A.
Step 6: Join AC.
Hence, $\triangle A B C$ is the required triangle.

Question 3: Construct a $\triangle A B C$ in which $B C=3.4 \mathrm{~cm}, A B-A C=1.5 \mathrm{~cm}$ and $\angle B=45^{\circ}$.

Solution:

Steps of Construction:
Step 1: Draw a line segment $\mathrm{BC}=3.4 \mathrm{~cm}$.
Step 2: Draw $\angle X B C=45^{\circ}$.
Step 3: Draw an arc which intersects $X B$ at point D form point B and with radius 1.5 cm . So, $B D=1.5$ cm.

Step 4: Join line segment DC.
Step 5: Draw a perpendicular bisector of DC which intersects BX at A.
Step 6: Join line segment AC.
Hence, $\triangle A B C$ is the required triangle.

Question 4: Using rulers and compasses only, construct a $\triangle A B C$, given base $B C=7 \mathrm{~cm}, \angle A B C=60^{\circ}$ and $A B+A C=12 \mathrm{~cm}$.

Solution:

Step 1: Draw a line segment $B C=7 \mathrm{~cm}$.
Step 2: Draw an arc from point B cutting BC at N . (Choose any radius.)
Step 3: Keep compass at point N with same radius selected in step 2, cut the previous arc at M.
Step 4: Join line segment BM.
Step 5: Produce $B M$ to any point P
Step 6: Cut BR = 12 cm , from BP.
Step 7: Join CR.
Step 8: Draw a perpendicular bisector of RC which intersects BR at A.
Step 9: Join line segment AC.
Hence, $\triangle A B C$ is the required triangle.

