

RD Sharma Solutions for Class 9 Maths Chapter 25 Probability

Exercise 25.1

Page No: 25.13

Question 1: A coin is tossed 1000 times with the following sequence: Head: 455, Tail: 545 Compute the probability of each event.

Solution:

Coin is tossed 1000 times, which means, number of trials are 1000.

Let us consider, event of getting head and event of getting tail be E and F respectively.

Number of favorable outcome = Number of trials in which the E happens = 455

So, Probability of E = (Number of favorable outcome) / (Total number of trials)

P(E) = 455/1000 = 0.455

Similarly, Number of favorable outcome = Number of trials in which the F happens = 545

Probability of the event getting a tail, P(F) = 545/1000 = 0.545

Question 2: Two coins are tossed simultaneously 500 times with the following frequencies of different outcomes:

Two heads: 95 times

One tail: 290 times

No head : 115 times

Find the probability of occurrence of each of these events.

Solution:

We know that, Probability of any event = (Number of favorable outcome) / (Total number of trials) Total number of trials = 95 + 290 + 115 = 500 Now, P(Getting two heads) = 95/500 = 0.19 P(Getting one tail) = 290/500 = 0.58 P(Getting no head) = 115/500 = 0.23

Question 3: Three coins are tossed simultaneously 100 times with the following frequencies of different outcomes:

Outcome	No head	One head	Two heads	Three heads
Frequency	14	38	36	12

If the three coins are simultaneously tossed again, compute the probability of:

- (i) 2 heads coming up
- (ii) 3 heads coming up
- (iii) At least one head coming up
- (iv) Getting more heads than tails
- (v) Getting more tails than heads

Solution:

We know, Probability of an event = (Number of Favorable outcomes) / (Total Numbers of outcomes)

- In this case, total numbers of outcomes = 100.
- (i) Probability of 2 Heads coming up = 36/100 = 0.36
- (ii) Probability of 3 Heads coming up = 12/100 = 0.12
- (iii) Probability of at least one head coming up = (38+36+12) / 100 = 86/100 = 0.86
- (iv) Probability of getting more Heads than Tails = (36+12)/100 = 48/100 = 0.48
- (v) Probability of getting more tails than heads = (14+38) / 100 = 52/100 = 0.52

Question 4: 1500 families with 2 children were selected randomly, and the following data were recorded:

No of girls in a family	0	1	2	2
No of girls	211	814	475	

If a family is chosen at random, compute the probability that it has:

(i) No girl (ii) 1 girl (iii) 2 girls (iv) At most one girl (v) More girls than boys

Solution:

We know, Probability of an event = (Number of Favorable outcomes) / (Total Numbers of outcomes)

In this case, total numbers of outcomes = 211 + 814 + 475 = 1500.

(Here, total numbers of outcomes = total number of families)

- (i) Probability of having no girl = 211/1500 = 0.1406
- (ii) Probability of having 1 girl = 814/1500 = 0.5426
- (iii) Probability of having 2 girls = 475/1500 = 0.3166
- (iv) Probability of having at the most one girl = (211+814) /1500 = 1025/1500 = 0.6833
- (v) Probability of having more girls than boys = 475/1500 = 0.31

Question 5: In a cricket match, a batsman hits a boundary 6 times out of 30 balls he plays. Find the probability that on a ball played:

(i) He hits boundary (ii) He does not hit a boundary.

Solution:

Total number of balls played by a player = 30Number of times he hits a boundary = 6Number of times he does not hit a boundary = 30 - 6 = 24

We know, Probability of an event = (Number of Favorable outcomes) / (Total Numbers of outcomes)

Now,

(i) Probability (he hits boundary) = (Number of times he hit a boundary) / (Total number of balls he played)

= 6/30

RD Sharma Solutions for Class 9 Maths Chapter 25 Probability

= 1/5

(ii) Probability that the batsman does not hit a boundary = 24/30 = 4/5

Question 6: The percentage of marks obtained by a student in monthly unit tests are given below:

UNIT TEST	1	П	ш	IV	v
PERCENTAGE OF MARK OBTAINED	69	71	73	68	76
Final also such a billion also also social					
Find the probability that the stud	ient gets				
(i) More than 70% marks (ii) Less than 70% marks (iii) A distinction					
Solution:					
Total number of unit tests taken =	= 5				
We know, Probability of an event	= (Numb	er of Fa	vorable	outcor	mes) / (To
(i) Number of times student got m	nore than	70% =	3		
Probability (Getting more than 70	9%) = 3/5	= 0.6			
(ii) Number of times student got	less than	70% = 2	2		
Probability (Getting less than 70%	5) = 2/5 =	0.4			
(iii) Number of times student got [Marks more than 75%]	a distinct	ion = 1			

Probability (Getting a distinction) = 1/5 = 0.2

Question 7: To know the opinion of the students about Mathematics, a survey of 200 students were conducted. The data was recorded in the following table:

Opinion Like Dislike

Number of students 135 65

Find the probability that student chosen at random:

(i) Likes Mathematics (ii) Does not like it.

Solution:

Total number of students = 200 Students like mathematics = 135 Students dislike Mathematics = 65

We know, Probability of an event = (Number of Favorable outcomes) / (Total Numbers of outcomes)

(i) Probability (Student likes mathematics) = 135/200 = 0.675

(ii) Probability (Student does not like mathematics) = 65/200 = 0.325