

EXERCISE 2.4

PAGE: 2.15

1. In which of the following expressions, prime factorization has been done?

(i) $24 = 2 \times 3 \times 4$

(ii) $56 = 1 \times 7 \times 2 \times 2 \times 2$

(iii) $70 = 2 \times 5 \times 7$

(iv) $54 = 2 \times 3 \times 9$

Solution:

(i) We know that

 $24 = 2 \times 3 \times 4$ is not a prime factorization since 4 is not a prime number.

(ii) We know that

 $56 = 1 \times 7 \times 2 \times 2 \times 2$ is not a prime factorization since 1 is not a prime number.

(iii) We know that

 $70 = 2 \times 5 \times 7$ is a prime factorization since 2, 5 and 7 are prime numbers.

(iv) We know that

 $54 = 2 \times 3 \times 9$ is not a prime factorization since 9 is not a prime number.

2. Determine prime factorization of each of the following numbers:

- (i) 216
- (ii) 420
- (iii) 468
- (iv) 945
- (v) 7325
- (vi) 13915

Solution:

(i) 216

We know that

2	216
2	108
2	54
3	27
3	9
3	3
	1

Hence, the prime factorization of 216 is $2 \times 2 \times 2 \times 3 \times 3 \times 3$.

(ii) 420

We know that

2	420
2	210
3	105
5	35
7	7
	1

Hence, the prime factorization of 420 is $2 \times 2 \times 3 \times 5 \times 7$.

(iii) 468

We know that

2	468
2	234
3	117
3	39
13	13
	1

Hence, the prime factorization of 468 is $2 \times 2 \times 3 \times 3 \times 13$.

(iv) 945

We know that

3	945
3	315
3	105
5	35
7	7
	1

Hence, the prime factorization of 945 is $3 \times 3 \times 3 \times 5 \times 7$.

(v) 7325

We know that

5	7325
5	1465
293	293

Hence, the prime factorization of 7325 is $5 \times 5 \times 293$.

(vi) 13915

We know that

5	13915
11	2783
11	253
23	23
	1

Hence, the prime factorization of 13915 is $5 \times 11 \times 11 \times 23$.

3. Write the smallest 4-digit number and express it as a product of primes. Solution:

1000 is the smallest 4-digit number.

We know that

$$1000 = 2 \times 500$$

$$= 2 \times 2 \times 250$$

So we get

 $1000 = 2 \times 2 \times 2 \times 125$

It can be further expanded as

 $1000 = 2 \times 2 \times 2 \times 5 \times 25$

We get

 $1000 = 2 \times 2 \times 2 \times 5 \times 5 \times 5$

Therefore, the smallest 4-digit number is 1000 and can be expressed as $2 \times 2 \times 2 \times 5 \times 5 \times 5$.

4. Write the largest 4-digit number and give its prime factorization. Solution:

9999 is the largest 4-digit number

We know that

3	9999
3	3333
11	1111
101	101
	1

Therefore, 9999 is the largest 4-digit number and can be expressed as $3 \times 3 \times 11 \times 101$.

5. Find the prime factors of 1729. Arrange the factors in ascending order, and find the relation between two consecutive prime factors. Solution:

We know that

7	1729
13	247
19	19
	1

Hence, 1729 can be expressed as $7 \times 13 \times 19$

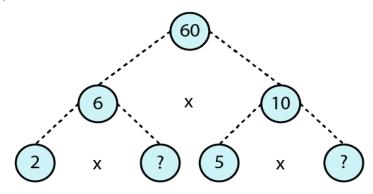
We know that the consecutive prime factors of 1729 are 7, 13 and 19

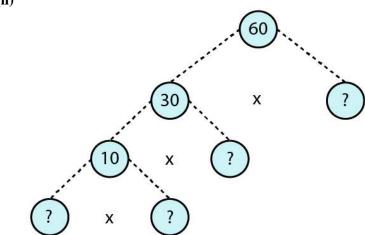
$$13 - 7 = 6$$

$$19 - 13 = 6$$

Therefore, in the two consecutive prime factors each factor is 6 more than the previous factor.

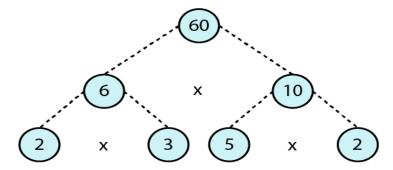
6. Which factors are not included in the prime factorization of a composite number? Solution:


1 and the number itself are not included in the prime factorization of a composite number.


For example, 4 is a composite number having prime factorization 2×2 .

7. Here are two difference factor trees for 60. Write the missing numbers:

(i)

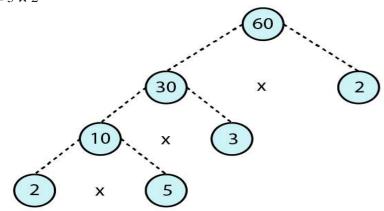


Solution:

(i) We know that

$$6 = 2 \times 3$$

$$10 = 5 \times 2$$


(ii) We know that

 $60 = 30 \times 2$

 $30 = 10 \times 3$

 $10 = 5 \times 2$

