

EXERCISE 5.3

PAGE: 5.11

1. Find the additive inverse of each of the following integers:

- (i) 52
- (ii) 176
- (iii) **0**
- (iv) 1

Solution:

- (i) The additive inverse of 52 is -52.
- (ii) The additive inverse of -176 is 176.
- (iii) The additive inverse of 0 is 0.
- (iv) The additive inverse of 1 is -1.

2. Find the successor of each of the following integers:

- (i) 42
- (ii) -1
- (iii) **0**
- (iv) 200
- (v) -99

Solution:

- (i) The successor of -42 = -42 + (-1)
- We get
- = 1 42 = -41
- (ii) The successor of -1 is
- -1 + 1 = 0
- (iii) The successor of 0 is
- 0 + 1 = 1
- (iv) The successor of -200 is
- -200 + 1 = -199
- (v) The successor of -99 is
- -99 + 1 = -98

3. Find the predecessor of each of the following integers:

- (i) 0
- (ii) 1
- (iii) 1
- (iv) 125
- (v) 1000

Solution:

(i) The predecessor of 0 is

0 - 1 = -1

(ii) The predecessor of 1 is
$$1-1=0$$

(iii) The predecessor of -1 is
$$-1 - 1 = -2$$

(iv) The predecessor of
$$-125$$
 is $-125 - 1 = -126$

(v) The predecessor of 1000 is
$$1000 - 1 = 999$$

4. Which of the following statements are true?

- (i) The sum of a number and its opposite is zero.
- (ii) The sum of two negative integers is a positive integer.
- (iii) The sum of a negative integer and a positive integer is always a negative integer.
- (iv) The successor of -1 is 1.
- (v) The sum of three different integers can never be zero. Solution:

(i) True.
$$1 - 1 = 0$$

(ii) False.
$$-1 - 1 = -2$$

(iii) False.
$$-2 + 3 = 1$$

(iv) False. The successor of -1 is 0.

(v) False.
$$1 + 2 - 3 = 0$$

5. Write all integers whose absolute values are less than 5. Solution:

Solution.

The integers whose absolute values are less than 5 are -4, -3, -2, -1, 0, 1, 2, 3, 4

6. Which of the following is false:

(i)
$$|4+2| = |4| + |2|$$

(ii)
$$|2-4|=|2|+|4|$$

(iii)
$$|4-2| = |4| - |2|$$

$$(iv) |(-2) + (-4)| = |-2| + |-4|$$

Solution:

- (i) True.
- (ii) False.
- (iii) True.

(iv) True.

7. Complete the following table:

+	-6	-4	-2	0	2	4	6
6						10	
4							
2							8
0	-6						
-2							
-4						0	
-6				-6			

From the above table:

(i) Write all the pairs of integers whose sum is 0.

(ii) Is
$$(-4) + (-2) = (-2) + (-4)$$
?

(iii) Is
$$0 + (-6) = -6$$
?

Solution:

+	-6	-4	-2	0	2	4	6
6	0	2	4	6	8	10	12
4	-2	0	2	4	6	8	10
2	-4	-2	0	2	4	6	8
0	-6	-4	-2	0	2	4	6
-2	-8	-6	-4	-2	0	2	4
-4	-10	-8	-6	-4	-2	0	2
-6	-12	-10	-8	-6	-4	-2	0

(i) The pairs of integers whose sum is 0 are

$$(6, -6), (4, -4), (3, -3), (2, -2), (1, -1), (0, 0)$$

(ii) Yes. By using commutativity of addition (-4) + (-2) = (-2) + (-4)

(iii) Yes. By using additive identity 0 + (-6) = -6.

8. Find an integer x such that

(i)
$$x + 1 = 0$$

(ii)
$$x + 5 = 0$$

$$(iii) - 3 + x = 0$$

(iv)
$$x + (-8) = 0$$

$$(v) 7 + x = 0$$

(vi)
$$x + 0 = 0$$

Solution:

(i)
$$x + 1 = 0$$

Subtracting 1 on both sides

$$x + 1 - 1 = 0 - 1$$

We get

$$x = -1$$

(ii) x + 5 = 0

By subtracting 5 on both sides

$$x + 5 - 5 = 0 - 5$$

So we get

$$x = -5$$

(iii) - 3 + x = 0

By adding 3 on both sides

$$-3 + x + 3 = 0 + 3$$

So we get

$$x = 3$$

(iv) x + (-8) = 0

By adding 8 on both sides

$$x - 8 + 8 = 0 + 8$$

So we get

$$x = 8$$

(v) 7 + x = 0

By subtracting 7 on both sides

$$7 + x - 7 = 0 - 7$$

So we get

$$x = -7$$

(vi)
$$x + 0 = 0$$

So we get

$$x = 0$$