Exercise 7.3 Page No: 7.22

1. The following table gives the distribution of total household expenditure (in rupees) of manual workers in a city.

| Expenditure (in | Frequency (f <sub>i</sub> ) | Expenditure (in           | Frequency (f <sub>i</sub> ) |
|-----------------|-----------------------------|---------------------------|-----------------------------|
| rupees) (x)     |                             | rupees) (x <sub>i</sub> ) |                             |
| 100 - 150       | 24                          | 300 – 350                 | 30                          |
| 150 – 200       | 40                          | 350 – 400                 | 22                          |
| 200 – 250       | 33                          | 400 – 450                 | 16                          |
| 250 – 300       | 28                          | 450 - 500                 | 7                           |

Find the average expenditure (in rupees) per household.

#### **Solution:**

Let the assumed mean (A) = 275

| Class interval | Mid value (x <sub>i</sub> ) | $d_i = x_i - 275$ | $u_i = (x_i - 275)/50$ | Frequency fi | fiui                   |
|----------------|-----------------------------|-------------------|------------------------|--------------|------------------------|
| 100 - 150      | 125                         | -150              | -3                     | 24           | -72                    |
| 150 - 200      | 175                         | -100              | -2                     | 40           | -80                    |
| 200 - 250      | 225                         | -50               | -1                     | 33           | -33                    |
| 250 - 300      | 275                         | 0                 | 0                      | 28           | 0                      |
| 300 - 350      | 325                         | 50                | 1                      | 30           | 30                     |
| 350 - 400      | 375                         | 100               | 2                      | 22           | 44                     |
| 400 - 450      | 425                         | 150               | 3                      | 16           | 48                     |
| 450 - 500      | 475                         | 200               | 4                      | 7            | 28                     |
|                |                             | 1 410             |                        | N = 200      | $\Sigma f_i u_i = -35$ |

It's seen that A = 275 and h = 50 So,

Mean = A + h x (
$$\Sigma$$
fi ui/N)  
= 275 + 50 (-35/200)  
= 275 - 8.75  
= 266.25

2. A survey was conducted by a group of students as a part of their environmental awareness program, in which they collected the following data regarding the number of plants in 200 houses in a locality. Find the mean number of plants per house.

| Number     | 0 - 2 | 2 - 4 | 4 - 6 | 6 - 8 | 8 - 10 | 10 - 12 | 12 - 14 |
|------------|-------|-------|-------|-------|--------|---------|---------|
| of plants: |       |       |       |       |        |         |         |
| Number     | 1     | 2     | 1     | 5     | 6      | 2       | 3       |
| of house:  |       |       |       |       |        |         |         |

Which method did you use for finding the mean, and why?

#### **Solution:**

From the given data,



To find the class interval we know that, Class marks  $(x_i) = (upper class \ limit + lower \ class \ limit)/2$ Now, let's compute  $x_i$  and  $f_ix_i$  by the following

| Number of plants | Number of house (fi) | Xi | $f_ix_i$               |
|------------------|----------------------|----|------------------------|
| 0 - 2            | 1                    | 1  | 1                      |
| 2 - 4            | 2                    | 3  | 6                      |
| 4 – 6            | 1                    | 5  | 5                      |
| 6-8              | 5                    | 7  | 35                     |
| 8 – 10           | 6                    | 9  | 54                     |
| 10 – 12          | 2                    | 11 | 22                     |
| 12 – 14          | 3                    | 13 | 39                     |
| Total            | N = 20               |    | $\Sigma f_i u_i = 162$ |

Here,

Mean = 
$$\Sigma f_i u_i / N$$
  
= 162/20  
= 8.1

Thus, the mean number of plants in a house is 8.1

We have used the direct method as the values of class mark  $x_i$  and  $f_i$  is very small.

3. Consider the following distribution of daily wages of workers of a factory

| Daily wages (in ₹) | 100 - 120 | 120 - 140 | 140 - 160 | 160 - 180 | 180 - 200 |
|--------------------|-----------|-----------|-----------|-----------|-----------|
| Number of workers: | 12        | 14        | 8         | 6         | 10        |

Find the mean daily wages of the workers of the factory by using an appropriate method.

#### **Solution:**

Let the assume mean (A) = 150

| Class interval | Mid value x <sub>i</sub> | $d_i = x_i - 150$ | $u_i = (x_i - 150)/20$ | Frequency fi | $f_i u_i$              |
|----------------|--------------------------|-------------------|------------------------|--------------|------------------------|
| 100 - 120      | 110                      | -40               | -2                     | 12           | -24                    |
| 120 - 140      | 130                      | -20               | -1                     | 14           | -14                    |
| 140 - 160      | 150                      | 0                 | 0                      | 8            | 0                      |
| 160 - 180      | 170                      | 20                | 1                      | 6            | 6                      |
| 180 - 200      | 190                      | 40                | 2                      | 10           | 20                     |
|                |                          |                   |                        | N= 50        | $\Sigma f_i u_i = -12$ |

It's seen that,

$$A = 150 \text{ and } h = 20$$

So.

Mean = 
$$A + h \times (\Sigma f_i u_i/N)$$

$$= 150 + 20 \text{ x } (-12/50)$$

$$= 150 - 24/5$$

$$= 150 = 4.8$$

$$= 145.20$$

4. Thirty women were examined in a hospital by a doctor and the number of heart beats per minute recorded and summarized as follows. Find the mean heart beats per minute for these women, choosing a suitable method.

| Number<br>of heart<br>beats per | 65 - 68 | 68 - 71 | 71 - 74 | 74 - 77 | 77 - 80 | 80 - 83  | 83 - 86 |
|---------------------------------|---------|---------|---------|---------|---------|----------|---------|
| minute:                         |         |         |         |         | _       | _        |         |
| Number                          | 2       | 4       | 3       | 8       | 7       | 4        | 2       |
| of                              |         |         |         |         |         |          |         |
| women:                          |         |         |         | -       | 8       | The same |         |

#### **Solution:**

Using the relation  $(x_i) = (upper class limit + lower class limit)/2$ 

And, class size of this data = 3

Let the assumed mean (A) = 75.5

So, let's calculate di, ui, fiui as following:

| Number of heart  | Number of  | Xi   | $d_i = x_i - 75.5$ | $u_i = (x_i - 755)/h$ | $f_iu_i$             |
|------------------|------------|------|--------------------|-----------------------|----------------------|
| beats per minute | women (fi) |      |                    |                       |                      |
| 65 – 68          | 2          | 66.5 | -9                 | -3                    | -6                   |
| 68 – 71          | 4          | 69.5 | -6                 | -2                    | -8                   |
| 71 – 74          | 3          | 72.5 | -3                 | -1                    | -3                   |
| 74 – 77          | 8          | 75.5 | 0                  | 0                     | 0                    |
| 77 – 80          | 7          | 78.5 | 3                  | 1                     | 7                    |
| 80 - 83          | 4          | 81.5 | 6                  | 2                     | 8                    |
| 83 – 86          | 2          | 84.5 | 9                  | 3                     | 6                    |
|                  | N = 30     |      |                    |                       | $\Sigma f_i u_i = 4$ |

From table, it's seen that

$$N = 30 \text{ and } h = 3$$

So, the mean = 
$$A + h x (\Sigma f_i u_i/N)$$

$$= 75.5 + 3 \times (4/30)$$

$$= 75.5 + 2/5$$

$$= 75.9$$

Therefore, the mean heart beats per minute for those women are 75.9 beats per minute.

Find the mean of each of the following frequency distributions: (5 - 14) 5.

| Class interval: | 0-6 | 6 - 12 | 12 - 18 | 18 – 24 | 24 - 30 |
|-----------------|-----|--------|---------|---------|---------|
| Frequency:      | 6   | 8      | 10      | 9       | 7       |

#### **Solution:**

Let's consider the assumed mean (A) = 15

| Class interval | Mid - value x <sub>i</sub> | $d_i = x_i - 15$ | $u_i = (x_i - 15)/6$ | $f_i$  | $f_i u_i$            |
|----------------|----------------------------|------------------|----------------------|--------|----------------------|
| 0-6            | 3                          | -12              | -2                   | 6      | -12                  |
| 6 - 12         | 9                          | -6               | -1                   | 8      | -8                   |
| 12 - 18        | 15                         | 0                | 0                    | 10     | 0                    |
| 18 - 24        | 21                         | 6                | 1                    | 9      | 9                    |
| 24 - 30        | 27                         | 12               | 2                    | 7      | 14                   |
|                |                            |                  | - 10                 | N = 40 | $\Sigma f_i u_i = 3$ |

From the table it's seen that,

$$A = 15 \text{ and } h = 6$$

$$Mean = A + h \times (\Sigma f_i u_i/N)$$

$$= 15 + 6 \times (3/40)$$

$$= 15 + 0.45$$

$$= 15.45$$

6.

| Class interval: | 50 – 70 | 70 – 90 | 90 – 110 | 110 - 130 | 130 - 150 | 150 - 170 |
|-----------------|---------|---------|----------|-----------|-----------|-----------|
| Frequency:      | 18      | 12      | 13       | 27        | 8         | 22        |

#### **Solution:**

### Let's consider the assumed mean (A) = 100

| Class interval | Mid - value x <sub>i</sub> | $d_i = x_i - 100$ | $u_i = (x_i - 100)/20$ | $f_i$   | $f_i u_i$             |
|----------------|----------------------------|-------------------|------------------------|---------|-----------------------|
| 50 - 70        | 60                         | -40               | -2                     | 18      | -36                   |
| 70 - 90        | 80                         | -20               | -1                     | 12      | -12                   |
| 90 - 110       | 100                        | 0                 | 0                      | 13      | 0                     |
| 110 - 130      | 120                        | 20                | 1                      | 27      | 27                    |
| 130 - 150      | 140                        | 40                | 2                      | 8       | 16                    |
| 150 - 170      | 160                        | 60                | 3                      | 22      | 66                    |
|                |                            |                   |                        | N = 100 | $\Sigma f_i u_i = 61$ |

$$A = 100 \text{ and } h = 20$$
 
$$Mean = A + h \ x \ (\Sigma f_i \ u_i/N)$$
 
$$= 100 + 20 \ x \ (61/100)$$
 
$$= 100 + 12.2$$
 
$$= 112.2$$

7.

| Class interval: | 0 - 8 | 8 - 16 | 16 - 24 | 24 - 32 | 32 - 40 |
|-----------------|-------|--------|---------|---------|---------|
| Frequency:      | 6     | 7      | 10      | 8       | 9       |

#### **Solution:**

Let's consider the assumed mean (A) = 20

| Class interval | Mid - value x <sub>i</sub> | $d_i\!=x_i\!-20$ | $u_i = (x_i - 20)/8$ | $\mathbf{f}_{\mathrm{i}}$ | $f_iu_i$             |
|----------------|----------------------------|------------------|----------------------|---------------------------|----------------------|
| 0 - 8          | 4                          | -16              | -2                   | 6                         | -12                  |
| 8 – 16         | 12                         | -8               | -1                   | 7                         | -7                   |
| 16 - 24        | 20                         | 0                | 0                    | 10                        | 0                    |
| 24 - 32        | 28                         | 8                | 1                    | 8                         | 8                    |
| 32 - 40        | 36                         | 16               | 2                    | 9                         | 18                   |
|                |                            |                  |                      | N = 40                    | $\Sigma f_i u_i = 7$ |

From the table it's seen that,

$$A = 20$$
 and  $h = 8$   
 $Mean = A + h \times (\Sigma f_i u_i/N)$   
 $= 20 + 8 \times (7/40)$   
 $= 20 + 1.4$   
 $= 20.4$ 

8.

| Class interval: | 0-6 | 6 - 12 | 12 - 18 | 18 – 24 | 24 - 30 |
|-----------------|-----|--------|---------|---------|---------|
| Frequency:      | 7   | 5      | 10      | 12      | 6       |

#### **Solution:**

Let's consider the assumed mean (A) = 15

| Class interval | Mid - value x <sub>i</sub> | $d_i = x_i - 15$ | $u_i = (x_i - 15)/6$ | $\mathbf{f}_{\mathrm{i}}$ | $f_i u_i$            |
|----------------|----------------------------|------------------|----------------------|---------------------------|----------------------|
| 0 - 6          | 3                          | -12              | -2                   | 7                         | -14                  |
| 6 - 12         | 9                          | -6               | -1                   | 5                         | -5                   |
| 12 - 18        | 15                         | 0                | 0                    | 10                        | 0                    |
| 18 - 24        | 21                         | 6                | 1                    | 12                        | 12                   |
| 24 - 30        | 27                         | 12               | 2                    | 6                         | 12                   |
|                |                            |                  |                      | N = 40                    | $\Sigma f_i u_i = 5$ |

$$A = 15$$
 and  $h = 6$   
 $Mean = A + h \times (\Sigma f_i u_i/N)$   
 $= 15 + 6 \times (5/40)$ 

$$= 15 + 0.75$$
  
= 15.75

9.

| Class interval: | 0 - 10 | 10 - 20 | 20 - 30 | 30 – 40 | 40 - 50 |
|-----------------|--------|---------|---------|---------|---------|
| Frequency:      | 9      | 12      | 15      | 10      | 14      |

#### **Solution:**

Let's consider the assumed mean (A) = 25

| Class interval | Mid - value x <sub>i</sub> | $d_i = x_i - 25$ | $u_i = (x_i - 25)/10$ | $f_i$  | $f_i u_i$            |
|----------------|----------------------------|------------------|-----------------------|--------|----------------------|
| 0 - 10         | 5                          | -20              | -2                    | 9      | -18                  |
| 10 - 20        | 15                         | -10              | -1                    | 12     | -12                  |
| 20 - 30        | 25                         | 0                | 0                     | 15     | 0                    |
| 30 - 40        | 35                         | 10               | 1                     | 10     | 10                   |
| 40 - 50        | 45                         | 20               | 2                     | 14     | 28                   |
|                |                            |                  | Ø . Ø . I             | N = 60 | $\Sigma f_i u_i = 8$ |

From the table it's seen that,

A = 25 and h = 10  
Mean = A + h x (
$$\Sigma$$
fi ui/N)  
= 25 + 10 x (8/60)  
= 25 + 4/3  
= 79/3 = 26.333

10.

| 10.             |       |        |         |         |         |
|-----------------|-------|--------|---------|---------|---------|
| Class interval: | 0 - 8 | 8 - 16 | 16 – 24 | 24 - 32 | 32 - 40 |
| Frequency:      | 5     | 9      | 10      | 8       | 8       |

#### **Solution:**

Let's consider the assumed mean (A) = 20

| Class interval | Mid - value x <sub>i</sub> | $d_i = x_i - 20$ | $u_i = (x_i - 20)/8$ | $f_i$  | $f_i u_i$            |
|----------------|----------------------------|------------------|----------------------|--------|----------------------|
| 0 - 8          | 4                          | -16              | -2                   | 5      | -10                  |
| 8 – 16         | 12                         | -4               | -1                   | 9      | -9                   |
| 16 - 24        | 20                         | 0                | 0                    | 10     | 0                    |
| 24 - 32        | 28                         | 4                | 1                    | 8      | 8                    |
| 32 - 40        | 36                         | 16               | 2                    | 8      | 16                   |
|                |                            |                  |                      | N = 40 | $\Sigma f_i u_i = 5$ |

$$A = 20 \text{ and } h = 8$$
 
$$Mean = A + h \ x \ (\Sigma f_i \ u_i/N)$$



$$= 20 + 8 \times (5/40)$$
  
=  $20 + 1$   
=  $21$ 

#### 11.

| Class interval: | 0-8 | 8 - 16 | 16 - 24 | 24 – 32 | 32 – 40 |
|-----------------|-----|--------|---------|---------|---------|
| Frequency:      | 5   | 6      | 4       | 3       | 2       |

#### **Solution:**

Let's consider the assumed mean (A) = 20

| Class interval | Mid - value x <sub>i</sub> | $d_i\!=x_i\!-20$ | $u_i = (x_i - 20)/8$ | $f_i$  | $f_i u_i$             |
|----------------|----------------------------|------------------|----------------------|--------|-----------------------|
| 0 - 8          | 4                          | -16              | -2                   | 5      | -12                   |
| 8 – 16         | 12                         | -8               | -1                   | 6      | -8                    |
| 16 - 24        | 20                         | 0                | 0                    | 4      | 0                     |
| 24 - 32        | 28                         | 8                | 1                    | 3      | 9                     |
| 32 - 40        | 36                         | 16               | 2                    | 2      | 14                    |
|                |                            |                  |                      | N = 20 | $\Sigma f_i u_i = -9$ |

From the table it's seen that,

$$A = 20 \text{ and } h = 8$$

$$Mean = A + h \times (\Sigma f_i u_i/N)$$

$$= 20 + 6 \times (-9/20)$$

$$= 20 - 72/20$$

$$= 20 - 3.6$$

$$= 16.4$$

#### **12.**

| Class interval: | 10 - 30 | 30 - 50 | 50 - 70 | 70 – 90 | 90 - 110 | 110 - 130 |
|-----------------|---------|---------|---------|---------|----------|-----------|
| Frequency:      | 5       | 8       | 12      | 20      | 3        | 2         |

#### **Solution:**

Let's consider the assumed mean (A) = 60

| Class interval | Mid - value xi | $d_i = x_i - 60$ | $u_i = (x_i - 60)/20$ | fi     | fiui                  |
|----------------|----------------|------------------|-----------------------|--------|-----------------------|
| 10 - 30        | 20             | -40              | -2                    | 5      | -10                   |
| 30 - 50        | 40             | -20              | -1                    | 8      | -8                    |
| 50 – 70        | 60             | 0                | 0                     | 12     | 0                     |
| 70 - 90        | 80             | 20               | 1                     | 20     | 20                    |
| 90 – 110       | 100            | 40               | 2                     | 3      | 6                     |
| 110 - 130      | 120            | 60               | 3                     | 2      | 6                     |
|                |                |                  |                       | N = 50 | $\Sigma f_i u_i = 14$ |



From the table it's seen that,

$$A = 60 \text{ and } h = 20$$

$$Mean = A + h \times (\Sigma f_i u_i/N)$$

$$= 60 + 20 \times (14/50)$$

$$= 60 + 28/5$$

$$= 60 + 5.6$$

$$= 65.6$$

#### **13.**

| Class interval: | 25 - 35 | 35 - 45 | 45 - 55 | 55 – 65 | 65 - 75 |
|-----------------|---------|---------|---------|---------|---------|
| Frequency:      | 6       | 10      | 8       | 12      | 4       |

#### **Solution:**

Let's consider the assumed mean (A) = 50

| Class interval | Mid - value xi | $d_i = x_i - 50$ | $u_i = (x_i - 50)/10$ | $\mathbf{f}_{\mathbf{i}}$ | fiui                  |
|----------------|----------------|------------------|-----------------------|---------------------------|-----------------------|
| 25 - 35        | 30             | -20              | -2                    | 6                         | -12                   |
| 35 - 45        | 40             | -10              | -1                    | 10                        | -10                   |
| 45 - 55        | 50             | 0                | 0                     | 8                         | 0                     |
| 55 - 65        | 60             | 10               | 1                     | 12                        | 12                    |
| 65 - 75        | 70             | 20               | 2                     | 4                         | 8                     |
|                |                |                  | ~ V                   | N = 40                    | $\Sigma f_i u_i = -2$ |

From the table it's seen that,

$$A = 50 \text{ and } h = 10$$

$$Mean = A + h \times (\Sigma f_i u_i/N)$$

$$= 50 + 10 \times (-2/40)$$

$$= 50 - 0.5$$

$$= 49.5$$

#### 14.

| Class interval: | 25 – 29 | 30 – 34 | 35 – 39 | 40 – 44 | 45 – 49 | 50 – 54 | 55 – 59 |
|-----------------|---------|---------|---------|---------|---------|---------|---------|
| Frequency:      | 14      | 22      | 16      | 6       | 5       | 3       | 4       |

#### **Solution:**

Let's consider the assumed mean (A) = 42

| Class interval | Mid - value x <sub>i</sub> | $d_i = x_i - 42$ | $u_i = (x_i - 42)/5$ | $\mathbf{f}_{\mathrm{i}}$ | fiui |
|----------------|----------------------------|------------------|----------------------|---------------------------|------|
| 25 - 29        | 27                         | -15              | -3                   | 14                        | -42  |
| 30 - 34        | 32                         | -10              | -2                   | 22                        | -44  |



| 35 – 39 | 37 | -5 | -1 | 16     | -16                    |
|---------|----|----|----|--------|------------------------|
| 40 - 44 | 42 | 0  | 0  | 6      | 0                      |
| 45 – 49 | 47 | 5  | 1  | 5      | 5                      |
| 50 – 54 | 52 | 10 | 2  | 3      | 6                      |
| 55 – 59 | 57 | 15 | 3  | 4      | 12                     |
|         |    |    |    | N = 70 | $\Sigma f_i u_i = -79$ |

$$A = 42$$
 and  $h = 5$ 

$$Mean = A + h x (\Sigma f_i u_i/N)$$

$$=42 + 5 \times (-79/70)$$

$$=42-79/14$$

$$=42-5.643$$

$$= 36.357$$