R D Sharma Solutions For Class 10 Maths Chapter 8 Quadratic Equations

Exercise 8.10

1. The hypotenuse of a right triangle is 25 cm . The difference between the lengths of the other two sides of the triangle is $5 \mathbf{~ c m}$. Find the lengths of these sides.

Solution:

Let the length of one side of the right triangle be x cm
So, the other side will be $=(x+5) \mathrm{cm}$ [as they differ by 5 cm]
And given that hypotenuse $=25 \mathrm{~cm}$
On applying Pythagoras Theorem, we have
$x^{2}+(x+5)^{2}=25^{2}$
$x^{2}+x^{2}+10 x+25=625$
$2 x^{2}+10 x+25-625=0$
$2 x^{2}+10 x-600=0$
$x^{2}+5 x-300=0$
$x^{2}-15 x+20 x-300=0 \quad$ [By factorisation method]
$x(x-15)+20(x-15)=0$
$(x-15)(x+20)=0$
$x=15$ or $x=-20$ (neglected) As the side of triangle can never be negative.
Thus, when $x=15 \Rightarrow x+5=15+5=20$
Hence, the length of side of right triangle is 15 cm and other side is 20 cm
2. The diagonal of a rectangular field is $\mathbf{6 0}$ meters more than the shorter side. If the longer side is 30 meters more than the shorter side, find the sides of the field.
Solution:
Let's consider the length of smaller side of rectangle as x metres
Then, the larger side will be $(x+30)$ metres and diagonal will be $=(x+60)$ metre
[From given
relation]
Now, by using Pythagoras theorem we have,
$x^{2}+(x+30)^{2}=(x+60)^{2}$
$x^{2}+x^{2}+60 x+900=x^{2}+120 x+3600$
$2 x^{2}+60 x+900-x^{2}-120 x-3600=0$
$x^{2}-60 x-2700=0$
$x^{2}-90 x+30 x-2700=0 \quad$ [By factorisation method]
$\mathrm{x}(\mathrm{x}-90)+30(\mathrm{x}-90)=0$
$(\mathrm{x}-90)(\mathrm{x}+30)=0$
$x=90$ or $x=-30$ (this is neglected as the side of a rectangle can never be negative)
Therefore, we only take $x=90$,
$\Rightarrow \quad \mathrm{x}+30=90+30=120$
Thus, the length of smaller side of rectangle is 90 metres and the larger side is 120 metres.

