Exercise 8.II

1. The perimeter of the rectangular field is 82 m and its area is $400 \mathrm{~m}^{2}$. Find the breadth of the rectangle?
Solution:

Given,
Perimeter $=82 \mathrm{~m}$ and its area $=400 \mathrm{~m}^{2}$
Let the breadth of the rectangle be considered as x m .
We know that,
Perimeter of a rectangle $=2$ (length + breadth $)$
$82=2($ length $+x)$
$41=($ length $+x)$
\Rightarrow Length $=(41-\mathrm{x}) \mathrm{m}$
We also know that,
Area of the rectangle $=$ length $*$ breadth
$400=(41-x)(x)$
$400=41 x-x^{2}$
$x^{2}-41 x+400=0$
$x^{2}-25 x-16 x+400=0$
$\mathrm{x}(\mathrm{x}-25)-16(\mathrm{x}-25)=0$
$(\mathrm{x}-16)(\mathrm{x}-25)=0$
Now, either $x-16=0 \Rightarrow \quad x=16$
Or, $\mathrm{x}-25=0 \Rightarrow \quad \mathrm{x}=25$
Therefore, the breadth of the rectangle can be either 16 m or 25 m respectively.
2. The length of the hall is 5 m more than its breadth. If the area of the floor of the hall is $\mathbf{8 4} \mathbf{m}^{\mathbf{2}}$, what are the length and breadth of the hall?
Solution:

Considering the breadth of the rectangle be $\mathrm{x} m$
Then, the length of the hall is 5 m more than its breadth i.e, $=(x+5) \mathrm{m}$ Given, area of the hall is $=84 \mathrm{~m}^{2}$
As the shape of the hall is rectangular, its area is given by
Area of the rectangular hall $=$ length $*$ breadth
$84=x(x+5)$
$x^{2}+5 \mathrm{x}-84=0$
$x^{2}+12 x-7 x-84=0$
$x(x+12)-7(x+12)=0$
$(x+12)(x-7)=0$
Now, either $x+12=0 \Rightarrow x=-12$ (neglected since the side of a rectangle can never be negative)
Or, $\mathrm{x}-7=0 \quad \Rightarrow \mathrm{x}=7$
So, only $x=7$ is considered.
$\Rightarrow \quad x+5=12$
Thus, the length and breadth of the rectangle is 7 and 12 respectively.
3. Two squares have sides x and $(x+4) \mathrm{cm}$. The sum of their area is $\mathbf{6 5 6} \mathrm{cm}^{2}$. Find the sides of the square.

Solution:

Let S_{1} and S_{2} be the two squares.
And, let xcm be the side square S_{1} and $(x+4) \mathrm{cm}$ be the side of the square S_{2}.
So,
Area of the square $S_{1}=x^{2} \mathrm{~cm}^{2}$
Area of the square $S_{2}=(x+4)^{2} \mathrm{~cm}^{2}$
From the question, we have
Area of the square $S_{1}+$ Area of the square $S_{2}=656 \mathrm{~cm}^{2}$
$\Rightarrow \mathrm{x}^{2} \mathrm{~cm}^{2}+(\mathrm{x}+4)^{2} \mathrm{~cm}^{2}=656 \mathrm{~cm}^{2}$
$x^{2}+x^{2}+16+8 x-656=0$
$2 x^{2}+16+8 x-656=0$
$2\left(x^{2}+4 x-320\right)=0$
$\mathrm{x}^{2}+4 \mathrm{x}-320=0$

R D Sharma Solutions For Class 10 Maths Chapter 8 Quadratic Equations

The Learning App
$x^{2}+20 x-16 x-320=0$
$x(x+20)-16(x+20)=0$
$(x+20)(x-16)=0$
Now, either $x+20=0 \Rightarrow x=-20$
Or, $x-16=0 \Rightarrow x=16$
As the value of x cannot be negative, we choose the value of $x=16 \Rightarrow x+4=20$
Therefore,
The side of the square $S_{1}=16 \mathrm{~cm}$
The side of the square $S_{2}=20 \mathrm{~cm}$
4. The area of a right-angled triangle is $165 \mathrm{~cm}^{2}$. Determine its base and altitude if the latter exceeds the former by 7 m .
Solution:

Let the altitude of the right angle triangle be considered as $\mathrm{x} m$
So given that, the altitude exceeds the base by $7 \mathrm{~m} \Rightarrow$ altitude $=(x-7) \mathrm{m}$
We know that,
Area of the triangle $=1 / 2 \times$ base \times altitude
$\Rightarrow \quad 165=1 / 2 \times(\mathrm{x}-7) \times \mathrm{x}$
$\mathrm{x}(\mathrm{x}-7)=330$
$\mathrm{x}^{2}-7 \mathrm{x}-330=0$
$\mathrm{x}^{2}-22 \mathrm{x}+15 \mathrm{x}-330=0$
$\mathrm{x}(\mathrm{x}-22)+15(\mathrm{x}-22)=0$
$(\mathrm{x}-22)(\mathrm{x}+15)=0$
Now, either $\mathrm{x}-22=0 \quad \Rightarrow \quad x=22$
Or, $x+15=0 \quad \Rightarrow \quad x=-15$ (neglected)
Since the value of x cannot be negative, so the value of $x=22$ is only considered
$\Rightarrow \quad x-7=15$
Therefore the base and altitude of the right angled triangle are 15 cm and 22 cm respectively.
5. Is it possible to design a rectangular mango grove whose length is twice its breadth and the area is $\mathbf{8 0 0} \mathrm{m}^{2}$? If so, find its length and breadth.
Solution:

Let the breadth of the rectangular mango grove be $\mathrm{x} m$ Given that, the length of rectangle is twice of its breadth.
So, length $=2 \mathrm{x}$
Area of the grove $=800 \mathrm{~m}^{2}$ (given)
We know that,
Area of the rectangle $=$ length $*$ breadth
$800=x(2 x)$
$2 x^{2}-800=0$
$\mathrm{x}^{2}-400=0$
$\Rightarrow x=\sqrt{400}=20$ (neglecting the negative sq. root as side can never be negative)
Therefore,
The breadth of the rectangular groove is 20 m .
And, the length of the rectangular groove is 40 m .
Yes, it is possible to design a rectangular groove whose length is twice of its breadth.

