R D Sharma Solutions For Class 10 Maths Chapter 8 Quadratic Equations

Exercise 8.2

1. The product of two consecutive positive integers is 306 . Form the quadratic equation to find the integers, if \mathbf{x} denotes the smaller integer.
Solution:
Let the two integers be x and $\mathrm{x}+1$, x taken as the smaller integer.
From the question, the product of these two integers is 306
So,
$\begin{array}{ll} & x(x+1)=306 \\ \Rightarrow \quad & x^{2}+x-306=0\end{array}$
Thus, the required quadratic equation is $x^{2}+x-306=0$
2. John and Jivani together have 45 marbles. Both of them lost 5 marbles each, and the product of the number of marbles they now have is $\mathbf{1 2 8}$. Form the quadratic equation to find how many marbles they to start with, if John had x marbles.
Solution:
Given,
John and Jilani together have a total of 45 marbles.
Let John have x marbles.
So, Jivani will be having ($45-\mathrm{x}$) marbles.
Number of marbles John had after losing 5 marbles $=x-5$
Number of marbles Jivani had after losing 5 marbles $=(45-x)-5=40-x$
Now, according to the question the product of the marbles that they are having now is 128 So,

$$
(x-5)(40-x)=128
$$

$\Rightarrow \quad 40 \mathrm{x}-\mathrm{x}^{2}-200=128$
$\Rightarrow \quad x^{2}-45 x+128+200=0$
$\Rightarrow \quad x^{2}-45 x+328=0$
Thus the required quadratic equation is $x^{2}-45 x+328=0$.
3. A cottage industry produces a certain number of toys in a day. The cost of production of each toy (in rupees) was found to be 55 minus the number of articles produced in a day. On a particular day, the total cost of production was Rs. 750. If x denotes the number of toys produced that day, form the quadratic equation to find x.
Solution:

Given that x denotes the number of toys produced in a day.
So, the cost of production of each toy $=(55-x)$
And, the total cost of production is the product of number of toys produced in a day and cost of production of each toy i.e, $x(55-x)$
From the question, it's given that
The total cost of production on that particular day is Rs. 750

So,

$$
\begin{array}{ll}
\Rightarrow & x(55-x)=750 \\
\Rightarrow & 55 x-x^{2}=750 \\
\Rightarrow & x^{2}-55 x+750=0
\end{array}
$$

Thus, the required quadratic equation is $\mathrm{x}^{2}-55 \mathrm{x}+750=0$.

