Exercise 8.4

Find the roots of the following quadratic equations (if they exist) by the method of completing the square.

1. $x^{2}-4 \sqrt{ } 2 x+6=0$

Solution:
Given equation,

$$
\begin{aligned}
& x^{2}-4 \sqrt{2 x}+6=0 \\
& x^{2}-2 \times x \times 2 \sqrt{2}+(2 \sqrt{2})^{2}-(2 \sqrt{2})^{2}+6=0 \\
& (x-2 \sqrt{2})^{2}=(2 \sqrt{2})^{2}-6 \\
& (x-2 \sqrt{2})^{2}=(4 \times 2)-6=8-6 \\
& (x-2 \sqrt{2})^{2}=2 \\
& (x-2 \sqrt{2})= \pm \sqrt{2} \\
& (x-2 \sqrt{2})=\sqrt{2} \text { or }(x-2 \sqrt{2})=-\sqrt{2} \\
& x=\sqrt{2}+2 \sqrt{2} \text { or } x=-\sqrt{2}+2 \sqrt{2} \\
& \Rightarrow x=3 \sqrt{2} \text { or } x=\sqrt{2}
\end{aligned}
$$

Thus, the roots of the given quadratic equation are $x=3 \sqrt{2}$ and $x=\sqrt{ } 2$.

2. $2 x^{2}-7 x+3=0$

Solution:

Given equation,

$$
\begin{aligned}
& 2 x^{2}-7 x+3=0 \\
& 2\left(x^{2}-\frac{7 x}{2}+\frac{3}{2}\right)=0 \\
& x^{2}-2 \times \frac{7}{2} \times \frac{1}{2} \times x+\frac{3}{2}=0 \\
& x^{2}-2 \times \frac{7}{4} \times x+\left(\frac{7}{4}\right)^{2}-\left(\frac{7}{4}\right)^{2}+\frac{3}{2}=0 \\
& x^{2}-2 \times \frac{7}{4} \times x+\left(\frac{7}{4}\right)^{2}-\left(\frac{49}{16}\right)+\frac{3}{2}=0
\end{aligned}
$$

$$
\begin{gathered}
\left(x-\frac{7}{4}\right)^{2}-\frac{49}{16}+\frac{3}{2}=0 \\
\left(x-\frac{7}{4}\right)^{2}=\frac{49}{16}-\frac{3}{2} \\
\left(x-\frac{7}{4}\right)^{2}=\frac{49-26}{16} \\
\left(x-\frac{7}{4}\right)^{2}=\frac{25}{16} \\
\left(x-\frac{7}{4}\right)^{2}=\left(\frac{5}{4}\right)^{2} \\
x-\frac{7}{4}= \pm \frac{5}{4} \\
x-\frac{7}{4}=\frac{5}{4} \text { or } x-\frac{7}{4}=-\frac{5}{4} \\
x=\frac{7}{4}+\frac{5}{4} \text { or } x=\frac{7}{4}-\frac{5}{4} \\
x=12 / 4=3 \text { or } x=2 / 4=1 / 2
\end{gathered}
$$

Thus, the roots of the given quadratic equation are $\mathrm{x}=3$ and $\mathrm{x}=1 / 2$.

3. $3 x^{2}+11 x+10=0$

Solution:
Given equation,

$$
\begin{aligned}
& x^{2}+\frac{11 x}{3}+\frac{10}{3}=0 \\
& x^{2}+2 \times \frac{1}{2} \times \frac{11 x}{3}+\frac{10}{3}=0 \\
& x^{2}+2 \times \frac{11 x}{6}+\left(\frac{11}{6}\right)^{2}-\left(\frac{11}{6}\right)^{2}+\frac{10}{3}=0 \\
& \left(x+\frac{11}{6}\right)^{2}=\left(\frac{11}{6}\right)^{2}-\frac{10}{3}
\end{aligned}
$$

$$
\begin{gathered}
\left(x+\frac{11}{6}\right)^{2}=\frac{121}{36}-\frac{10}{3} \\
\left(x+\frac{11}{6}\right)^{2}=\frac{121-120}{36} \\
\left(x+\frac{11}{6}\right)^{2}=\frac{1}{36} \\
\left(x+\frac{11}{6}\right)^{2}=\left(\frac{1}{6}\right)^{2} \\
x+\frac{11}{6}= \pm \frac{1}{6} \\
x+\frac{11}{6}=\frac{1}{6} \text { or } x+\frac{11}{6}=\frac{-1}{6} \\
x=\frac{1}{6}-\frac{11}{6} \text { or } x=\frac{-1}{6}-\frac{11}{6} \\
x=\frac{-10}{6} \text { or } x=\frac{-12}{6}=-2 \\
x \quad x=-5 / 3=3 \text { or } x=-2
\end{gathered}
$$

Thus, the roots of the given quadratic equation are $x=-5 / 3$ and $x=-2$.
4. $2 x^{2}+x-4=0$

Solution:
Given equation,

$$
\begin{aligned}
& 2 x^{2}+x-4=0 \\
& 2\left(x^{2}+\frac{x}{2}-\frac{4}{2}\right)=0 \\
& x^{2}+2 \times \frac{1}{2} \times \frac{1}{2} \times x-2=0 \\
& x^{2}+2 \times \frac{1}{4} \times x+\left(\frac{1}{4}\right)^{2}-\left(\frac{1}{4}\right)^{2}-2=0 \\
& \left(x+\frac{1}{4}\right)^{2}=\left(\frac{1}{4}\right)^{2}+2 \\
& \left(x+\frac{1}{4}\right)^{2}=\frac{1}{16}+2
\end{aligned}
$$

$$
\begin{aligned}
& \left(\mathrm{x}+\frac{1}{4}\right)^{2}=\frac{1+2 \times 16}{16} \\
& \left(\mathrm{x}+\frac{1}{4}\right)^{2}=\frac{1+32}{16} \\
& \left(\mathrm{x}+\frac{1}{4}\right)^{2}=\frac{33}{16} \\
& \left(\mathrm{x}+\frac{1}{4}\right)= \pm \sqrt{\frac{33}{16}} \\
& \left(\mathrm{x}+\frac{1}{4}\right)=\sqrt{\frac{33}{16}} \\
& \text { or }\left(\mathrm{x}+\frac{1}{4}\right)=-\sqrt{\frac{33}{16}} \\
& \mathrm{x}=\frac{\sqrt{33}}{4}-\frac{1}{4} \text { or } \mathrm{x}=-\frac{\sqrt{33}}{4}-\frac{1}{4} \\
& \mathrm{x}=\frac{\sqrt{33}-1}{4} \text { or } \mathrm{x}=-\frac{\sqrt{33}-1}{4}
\end{aligned}
$$

Thus, the roots of the given quadratic equation are

$$
x=\frac{\sqrt{33}-1}{4} \text { or } x=\frac{-\sqrt{33}-1}{4}
$$

5. $2 x^{2}+x+4=0$

Solution:
Given equation,

$$
\begin{aligned}
& 2 x^{2}+x+4=0 \\
& x^{2}+x / 2+2=0 \\
& x^{2}+2 \times \frac{1}{2} \times \frac{1}{2} \times x+2=0 \\
& x^{2}+2 \times \frac{1}{4} \times x+\left(\frac{1}{4}\right)^{2}-\left(\frac{1}{4}\right)^{2}+2=0 \\
& x^{2}+2 \times \frac{1}{4} \times x+\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{4}\right)^{2}-2
\end{aligned}
$$

$$
\begin{aligned}
& \left(x+\frac{1}{4}\right)^{2}=\frac{1-32}{16} \\
& \left(x+\frac{1}{4}\right)^{2}=\frac{-31}{16} \\
& \left(x+\frac{1}{4}\right)= \pm \sqrt{-\frac{31}{16}} \\
& \left(x+\frac{1}{4}\right)=\frac{\sqrt{-31}}{4} \text { or }\left(x+\frac{1}{4}\right)=\frac{-\sqrt{-31}}{4} \\
& x=\frac{\sqrt{-31-1}}{4} \text { or } x=\frac{-\sqrt{-31-1}}{4}
\end{aligned}
$$

Thus, the above are the two roots of the given quadratic equation.

