Exercise 8.8

1. The speed of a boat in still water is $8 \mathrm{~km} / \mathrm{hr}$. It can go 15 km upstream and 22 km downstream in 5 hours. Find the speed of the stream.

Solution:

Let the speed of stream be $x \mathrm{~km} / \mathrm{hr}$
Given, speed of boat in still water is $8 \mathrm{~km} / \mathrm{hr}$.
So, speed of downstream $=(8+x) \mathrm{km} / \mathrm{hr}$
And, speed of upstream $=(8-\mathrm{x}) \mathrm{km} / \mathrm{hr}$
Using, speed $=$ distance/ time
Time taken by the boat to go 15 km upstream = 15/(8-x)hr
And, time taken by the boat to return 22 km downstream $=22 /(8+\mathrm{x}) \mathrm{hr}$
From the question, the boat returns to the same point in 5 hr .
so, $\frac{15}{(8-x)}+\frac{22}{(8+x)}=5$

$$
\frac{15(8+x)+22(8-x)}{(8-x)(8+x)}=5
$$

$$
\frac{120+15 x+176-22 x}{64-x^{2}}=5
$$

$\frac{296-7 x}{64-x^{2}}=5$
$5 \mathrm{x}^{2}-7 \mathrm{x}+296-320=0$
$5 \mathrm{x}^{2}-7 \mathrm{x}-24=0$
$5 \mathrm{x}^{2}-15 \mathrm{x}+8 \mathrm{x}-24=0 \quad$ [by factorisation method]
$5 \mathrm{x}(\mathrm{x}-3)+8(\mathrm{x}-3)=0$
$(x-3)(5 x+8)=0$
$\therefore \mathrm{x}=3, \mathrm{x}=-8 / 5$
As the speed of the stream can never be negative, only the positive solution is considered.
Therefore, the speed of the stream is $3 \mathrm{~km} / \mathrm{hr}$.
2. A train, traveling at a uniform speed for 360 km , would have taken 48 minutes less to travel the same distance if its speed were $5 \mathrm{~km} / \mathrm{hr}$ more. Find the original speed of the train.

Solution:

Let the original speed of train be $x \mathrm{~km} / \mathrm{hr}$
When increased by 5 , speed of the train $=(x+5) \mathrm{km} / \mathrm{hr}$
Using, speed $=$ distance/ time
Time taken by the train for original uniform speed to cover $360 \mathrm{~km}=360 / \mathrm{x} \mathrm{hr}$.
And, time taken by the train for increased speed to cover $360 \mathrm{~km}=360 /(\mathrm{x}+5) \mathrm{hr}$.
Given, that the difference in the times is 48 mins. $\Rightarrow 48 / 60$ hour

R D Sharma Solutions For Class 10 Maths Chapter 8 Quadratic Equations

This can be expressed as below:

$$
\begin{aligned}
& \frac{360}{x}-\frac{360}{(x+5)}=\frac{48}{60} \\
& \frac{360(x+5)-360 x}{x(x+5)}=\frac{4}{5} \\
& \frac{360 x+1800-360 x}{x^{2}+5 x}=\frac{4}{5} \\
& 1800(5)=4\left(x^{2}+5 x\right) \\
& 9000=4 x^{2}+20 x \\
& 4 x^{2}+20 x-9000=0 \\
& x^{2}+5 x-2250=0 \\
& x^{2}+50 x-45 x-2250=0 \\
& x(x+50)-45(x+50)=0 \\
& (x+50)(x-45)=0 \\
& \therefore x=-50 \text { or } x=45
\end{aligned}
$$

Since, the speed of the train can never be negative $x=-50$ is not considered.
Therefore, the original speed of train is $45 \mathrm{~km} / \mathrm{hr}$.
3. A fast train takes one hour less than a slow train for a journey of 200 km . If the speed of the slow train is $10 \mathrm{~km} / \mathrm{hr}$ less than that of the fast train, find the speed of the two trains.

Solution:

Let's consider the speed of the fast train as $\mathrm{x} \mathrm{km} / \mathrm{hr}$
Then, the speed of the slow train will be $=(x-10) \mathrm{km} / \mathrm{hr}$
Using, speed $=$ distance/ time
Time taken by the fast train to cover $200 \mathrm{~km}=200 / \mathrm{x} \mathrm{hr}$
And, time taken by the slow train to cover $200 \mathrm{~km}=200 /(\mathrm{x}-10) \mathrm{hr}$
Given, that the difference in the times is 1 hour.
This can be expressed as below:

$$
\begin{aligned}
& \frac{200}{x}-\frac{200}{(x-10)}=1 \\
& \frac{(200(x-10)-200 x)}{x(x-10)}=1 \\
& \frac{200 x-2000-200 x}{x^{2}-10 x}=1
\end{aligned}
$$

$$
x^{2}-10 x=-2000
$$

$$
x^{2}-10 x+2000=0
$$

R D Sharma Solutions For Class 10 Maths Chapter 8 Quadratic Equations

$x^{2}-50 x+40 x+2000=0 \quad$ [by factorisation method]
$x(x-50)+40(x-50)=0$
$(x-50)(x+40)=0$
$x=50$ or $x=-40$
As, the speed of train can never be negative we neglect $x=-40$
Thus, speed of the fast train is $50 \mathrm{~km} / \mathrm{hr}$
And the speed of slow train $(50-10)=40 \mathrm{~km} / \mathrm{hr}$
4. A passenger train takes one hour less for a journey of $150 \mathbf{k m}$ if its speed is increased $5 \mathbf{k m} / \mathrm{hr}$ from its usual speed. Find the usual speed of the train.

Solution:

Let's assume the usual speed of train as $x \mathrm{~km} / \mathrm{hr}$
Then, the increased speed of the train $=(x+5) \mathrm{km} / \mathrm{hr}$
Using, speed $=$ distance/ time
Time taken by the train under usual speed to cover $150 \mathrm{~km}=150 / \mathrm{x} \mathrm{hr}$
Time taken by the train under increased speed to cover $150 \mathrm{~km}=150(\mathrm{x}+5) \mathrm{hr}$ Given, that the difference in the times is 1 hour.
This can be expressed as below:

$$
\begin{aligned}
& \text { So, } \frac{150}{x}-\frac{150}{(x+5)}=1 \\
& \frac{150(x+5)-150 x}{x(x+5)}=1 \\
& \frac{150 x+750-150 x}{x^{2}+5 x}=1 \\
& 750=x^{2}+5 x \\
& x^{2}+5 x-750=0 \\
& x^{2}-25 x+30 x-750=0 \\
& x(x-25)+30(x-25)=0 \\
& (x-25)(x+30)=0 \\
& x=25 \text { or } x=-30 \text { (neglected as the speed of the train can never be negative) } \\
& \text { Hence, the usual speed of the train is } x=25 \text { km/hr }
\end{aligned}
$$

5. The time taken by a person to cover 150 km was 2.5 hrs more than the time taken in the return journey. If he returned at the speed of $10 \mathrm{~km} / \mathrm{hr}$ more than the speed of going, what was the speed per hour in each direction?

Solution:

Let the ongoing speed of person be $\mathrm{xkm} / \mathrm{hr}$,
Then, the returning speed of the person is $=(x+10) \mathrm{km} / \mathrm{hr}$ (from the question)
Using, speed $=$ distance/ time

R D Sharma Solutions For Class 10 Maths Chapter 8 Quadratic Equations

Time taken by the person in going direction to cover $150 \mathrm{~km}=150 / \mathrm{x} \mathrm{hr}$
And, time taken by the person in returning direction to cover $150 \mathrm{~km}=150 /(\mathrm{x}+10) \mathrm{hr}$ Given, that the difference in the times is 2.5 hour $\Rightarrow 5 / 2$ hours
This can be expressed as below:

$$
\begin{aligned}
& \frac{150}{x}-\frac{150}{(x+10)}=\frac{5}{2} \\
& \frac{150(x+10)-150 x}{x(x+10)}=\frac{5}{2}
\end{aligned}
$$

$$
\frac{150 x+1500-150 x}{x^{2}+10 x}=\frac{5}{2}
$$

$\frac{1500}{x^{2}+10 x}=\frac{5}{2}$
$3000=5 \mathrm{x}^{2}+50 \mathrm{x}$
$5 x^{2}+50 x-3000=0$
$5\left(x^{2}+10 x-600\right)=0$
$x^{2}+10 x-600=0$
$x^{2}-20 x+30 x-600=0 \quad$ [by factorisation method]
$\mathrm{x}(\mathrm{x}-20)+30(\mathrm{x}-20)=0$
$(x-20)(x+30)=0$
$x=20$ or $x=-30$ (neglected) As the speed of train can never be negative.
Thus, $x=20$ Then, $(x+10)(20+10)=30$
Therefore, the ongoing speed of person is $20 \mathrm{~km} / \mathrm{hr}$.
And the returning speed of the person is $30 \mathrm{~km} / \mathrm{hr}$.
6. A plane left 40 minutes late due to bad weather and in order to reach the destination, 1600 km away in time, it had to increase its speed by $400 \mathrm{~km} / \mathrm{hr}$ from its usual speed. Find the usual speed of the plane.

Solution:

Let's assume the usual speed of the plane to be $x \mathrm{~km} / \mathrm{hr}$,
Then the increased speed of the plane is $=(x+4000) \mathrm{km} / \mathrm{hr}$
Using, speed = distance/ time
Time taken by the plane under usual speed to cover $1600 \mathrm{~km}=1600 / \mathrm{x} \mathrm{hr}$
Time taken by the plane under increased speed to cover $1600 \mathrm{~km}=1600 /(\mathrm{x}+400) \mathrm{hr}$
Given, that the difference in the times is $40 \mathrm{mins} \Rightarrow 40 / 60$ hours
This can be expressed as below:

$$
\begin{aligned}
& \frac{1600}{x}-\frac{1600}{(x+400)}=\frac{40}{60} \\
& \frac{1600(x+400)-1600 x}{x(x+400)}=\frac{2}{3} \\
& \frac{1600 x+640000-1600 x}{x^{2}+400 x}=\frac{2}{3} \\
& 1920000=2 x^{2}+800 x \\
& 2 x^{2}+800 x-1920000=0 \\
& 2\left(x^{2}+400 x-960000\right)=0 \\
& x^{2}+400 x-960000=0 \\
& x^{2}-800 x+1200 x-960000=0 \\
& x(x-800)+1200(x-800)=0 \\
& (x-800)(x+1200)=0 \\
& x=800 \text { or } x=-1200(n e g l e c t e d)
\end{aligned}
$$

As the speed of the train can never be negative.
Thus, the usual speed of the train is $800 \mathrm{~km} / \mathrm{hr}$.
7. An aero plane takes 1 hour less for a journey of 1200 km if its speed is increased by $100 \mathrm{~km} / \mathrm{hr}$ from its usual speed of the plane. Find its usual speed.
Solution:
Let's consider the usual speed of plane as $x \mathrm{~km} / \mathrm{hr}$,
Then, the increased speed of the plane is $=(x+100) \mathrm{km} / \mathrm{hr}$
Using, speed = distance/ time
Time taken by the plane under usual speed to cover $1200 \mathrm{~km}=1200 / \mathrm{x} \mathrm{hr}$
Time taken by the plane under increased speed to cover $1200 \mathrm{~km}=1200 /(\mathrm{x}+100) \mathrm{hr}$
Given, that the difference in the times is 1 hour.
So, this can be expressed as below:

$$
\begin{aligned}
& \frac{1200}{x}-\frac{1200}{(x+100)}=1 \\
& \frac{1200(x+100)-1200 x}{x(x+100)}=1 \\
& \frac{1200 x+120000-1200 x}{x^{2}+100 x}=1 \\
& \begin{array}{l}
120000=x^{2}+100 x \\
x^{2}+100 x-120000=0 \\
x^{2}-300 x+400 x-120000=0 \\
x(x-300)+400(x-300)=0
\end{array} \quad[\text { by factorisation method] }
\end{aligned}
$$

R D Sharma Solutions For Class 10 Maths Chapter 8 Quadratic Equations
$x=300$ or $x=-400$ neglected as the speed of the aero plane can never be negative. Therefore, the usual speed of train is $300 \mathrm{~km} / \mathrm{hr}$.

