

Exercise 9.4

Page No: 9.24

1. Find: (i) 10th tent of the AP 1, 4, 7, 10.... (ii) 18th term of the AP $\sqrt{2}$, $3\sqrt{2}$, $5\sqrt{2}$, (iii) nth term of the AP 13, 8, 3, -2, (iv) 10th term of the AP -40, -15, 10, 35, (v) 8th term of the AP 11, 104, 91, 78, (vi) 11th tenor of the AP 10.0, 10.5, 11.0, 11.2, (vii) 9th term of the AP 3/4, 5/4, 7/4 + 9/4, Solution:

- (i) Given A.P. is 1, 4, 7, 10, First term (a) = 1 Common difference (d) = Second term - First term = 4 - 1 = 3. We know that, nth term in an A.P = a + (n - 1)d Then, 10th term in the A.P is 1 + (10 - 1)3 = 1 + 9x3 = 1 + 27 = 28 $\therefore 10^{th}$ term of A. P. is 28
- (ii) Given A.P. is $\sqrt{2}$, $3\sqrt{2}$, $5\sqrt{2}$, First term (a) = $\sqrt{2}$ Common difference = Second term – First term $= 3\sqrt{2} - \sqrt{2}$ $\Rightarrow d = 2\sqrt{2}$ We know that, nth term in an A. P. = a + (n - 1)d Then, 18th term of A. P. = $\sqrt{2}$ + (18 - 1)2 $\sqrt{2}$ $= \sqrt{2} + 17.2\sqrt{2}$ $= \sqrt{2}$ (1+34)
 - = $35\sqrt{2}$ \therefore 18th term of A. P. is $35\sqrt{2}$

(iii) Given A. P. is 13, 8, 3, -2, First term (a) = 13 Common difference (d) = Second term first term = 8 - 13 = -5We know that, nth term of an A.P. $a_n = a + (n - 1)d$ = 13 + (n - 1) - 5 = 13 - 5n + 5 \therefore nth term of the A.P is $a_n = 18 - 5n$

(iv) Given A. P. is - 40, -15, 10, 35, First term (a) = -40

(v)

R D Sharma Solutions For Class 10 Maths Chapter 9 -Arithmetic Progressions

Common difference (d) = Second term - fast term = -15 - (-40)= 40 - 15 = 25 We know that, n^{th} term of an A.P. $a_n = a + (n - 1)d$ Then, 10^{th} term of A. P. $a_{10} = -40 + (10 - 1)25$ = -40 + 9.25= -40 + 225= 185 $\therefore 10^{\text{th}}$ term of the A. P. is 185 Given sequence is 117, 104, 91, 78, First term (a) = 117Common difference (d) = Second term - first term = 104 - 117 = -13We know that, n^{th} term = a + (n - 1)dThen, 8^{th} term = a + (8 - 1)d = 117 + 7(-13)= 117 - 91 = 26 \therefore 8th term of the A. P. is 26 Given A. P is 10.0, 10.5, 11.0, 11.5, (vi) First term (a) = 10.0Common difference (d) = Second term - first term = 10.5 - 10.0 = 0.5We know that, n^{th} term $a_n = a + (n - 1)d$ Then, 11^{th} term $a_{11} = 10.0 + (11 - 1)0.5$ $= 10.0 + 10 \ge 0.5$ = 10.0 + 5=15.0 $\therefore 11^{\text{th}}$ term of the A. P. is 15.0 (vii) Given A. P is 3/4, 5/4, 7/4, 9/4, First term (a) = 3/4Common difference (d) = Second term - first term = 5/4 - 3/4= 2/4We know that, n^{th} term $a_n = a + (n - 1)d$ Then, 9^{th} term $a_9 = a + (9 - 1)d$

$$= \frac{3}{4} + 8.\frac{2}{4}$$
$$= \frac{3}{4} + \frac{16}{4}$$
$$= \frac{19}{4}$$

 \therefore 9th term of the A. P. is 19/4.

2.(i) Which term of the AP 3, 8, 13, is 248?
(ii) Which term of the AP 84, 80, 76, ... is 0?
(iii) Which term of the AP 4. 9, 14, is 254?
(iv) Which term of the AP 21. 42, 63, 84, ... is 420?
(v) Which term of the AP 121, 117. 113, ... is its first negative term? Solution:

(i) Given A.P. is 3, 8, 13, First term (a) = 3 Common difference (d) = Second term - first term = 8 - 3 = 5 We know that, nth term (a_n) = a + (n - 1)d And, given nth term a_n = 248 248 = 3+(n - 1)5 248 = -2 + 5n 5n = 250 n = 250/5 = 50 \therefore 50th term in the A.P is 248.

- (ii) Given A. P is 84, 80, 76, First term (a) = 84 Common difference (d) = a₂ - a = 80 - 84 = -4 We know that, nth term (a_n) = a + (n - 1)d And, given nth term is 0 0 = 84 + (n - 1) - 4 84 = +4(n - 1) n - 1 = 84/4 = 21 n = 21 + 1 = 22 $\therefore 22^{nd}$ term in the A.P is 0.
- (iii) Given A. P 4, 9, 14,

First term (a) = 4 Common difference (d) = $a_2 - a_1$ = 9 - 4 = 5 We know that, nth term (a_n) = a + (n - 1)d And, given nth term is 254 4 + (n - 1)5 = 254 (n - 1) \cdot 5 = 250 n - 1 = 250/5 = 50 n = 51 \therefore 51th term in the A.P is 254.

- (iv) Given A. P 21, 42, 63, 84, $a = 21, d = a_2 - a_1$ = 42 - 21 = 21We know that, nth term $(a_n) = a + (n - 1)d$ And, given nth term = 420 21 + (n - 1)21 = 420 (n - 1)21 = 399 n - 1 = 399/21 = 19 n = 20 $\therefore 20^{th}$ term is 420.
- (v) Given A.P is 121, 117, 113, Fiat term (a) = 121 Common difference (d) = 117 - 121 = -4We know that, nth term a_n = a + (n - 1)d And, for some nth term is negative i.e., a_n < 0 121 + (n - 1) - 4 < 0 125 - 4n < 0 4n > 125 n > 125/4 n > 31.25 The integer which comes after 31.25 is 32. $\therefore 32^{nd}$ term in the A.P will be the first negative term.

3.(i) Is 68 a term of the A.P. 7, 10, 13,... ? (ii) Is 302 a term of the A.P. 3, 8, 13, ? (iii) Is -150 a term of the A.P. 11, 8, 5, 2, ... ? Solutions:

(i) Given, A.P. 7, 10, 13,... Here, a = 7 and $d = a_2 - a_1 = 10 - 7 = 3$

We know that, nth term $a_n = a + (n - 1)d$ Required to check nth term $a_n = 68$ a + (n - 1)d = 687 + (n - 1)3 = 687 + 3n - 3 = 683n + 4 = 683n = 64 $\Rightarrow n = 64/3$, which is not a whole number. Therefore, 68 is not a term in the A.P.

(ii) Given, A.P. 3, 8, 13,... Here, a = 3 and $d = a_2 - a_1 = 8 - 3 = 5$ We know that, nth term $a_n = a + (n - 1)d$ Required to check nth term $a_n = 302$ a + (n - 1)d = 302 3 + (n - 1)5 = 302 3 + 5n - 5 = 302 5n - 2 = 302 5n = 304 $\Rightarrow n = 304/5$, which is not a whole number. Therefore, 302 is not a term in the A.P.

(iii) Given, A.P. 11, 8, 5, 2, ... Here, a = 11 and $d = a_2 - a_1 = 8 - 11 = -3$ We know that, n^{th} term $a_n = a + (n - 1)d$ Required to check n^{th} term $a_n = -150$ a + (n - 1)d = -150 11 + (n - 1)(-3) = -150 11 - 3n + 3 = -150 3n = 150 + 14 3n = 164 $\Rightarrow n = 164/3$, which is not a whole number. Therefore, -150 is not a term in the A.P.

4. How many terms are there in the A.P.?

(i) 7, 10, 13,, 43
(ii) -1, -5/6, -2/3, -1/2, ..., 10/3
(iii) 7, 13, 19, ..., 205
(iv) 18, 15¹/₂, 13,, -47
Solution:

(i) Given, A.P. 7, 10, 13,, 43 Here, a = 7 and $d = a_2 - a_1 = 10 - 7 = 3$ We know that, n^{th} term $a_n = a + (n - 1)d$ And, given n^{th} term $a_n = 43$

BYJU'S

R D Sharma Solutions For Class 10 Maths Chapter 9 -Arithmetic Progressions

a + (n - 1)d = 437 + (n - 1)(3) = 43 7 + 3n - 3 = 43 3n = 43 - 4 3n = 39 ⇒ n = 13 Therefore, there are 13 terms in the given A.P.

(ii) Given, A.P. -1, -5/6, -2/3, -1/2, ..., 10/3 Here, a = -1 and $d = a_2 - a_1 = -5/6 - (-1) = 1/6$ We know that, nth term $a_n = a + (n - 1)d$ And, given nth term $a_n = 10/3$ a + (n - 1)d = 10/3 -1 + (n - 1)(1/6) = 10/3 -1 + n/6 - 1/6 = 10/3 n/6 = 10/3 + 1 + 1/6 n/6 = (20 + 6 + 1)/6 n = (20 + 6 + 1) $\Rightarrow n = 27$ Therefore, there are 27 terms in the given A.P.

(iii) Given, A.P. 7, 13, 19, ..., 205 Here, a = 7 and $d = a_2 - a_1 = 13 - 7 = 6$ We know that, n^{th} term $a_n = a + (n - 1)d$ And, given n^{th} term $a_n = 205$ a + (n - 1)d = 205 7 + (n - 1)(6) = 205 7 + 6n - 6 = 205 6n = 205 - 1 n = 204/6 $\Rightarrow n = 34$ Therefore, there are 34 terms in the given A.P.

(iv) Given, A.P. 18, $15\frac{1}{2}$, 13, ..., -47 Here, a = 7 and d = $a_2 - a_1 = 15\frac{1}{2} - 18 = 5/2$ We know that, nth term $a_n = a + (n - 1)d$ And, given nth term $a_n = -47$ a + (n - 1)d = 43 18 + (n - 1)(-5/2) = -47 18 - 5n/2 + 5/2 = -47 36 - 5n + 5 = -94 5n = 94 + 36 + 5 5n = 135 $\Rightarrow n = 27$ Therefore, there are 27 terms in the given A.P.

5. The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms. Solution:

Given, a = 5 and d = 3We know that, nth term $a_n = a + (n - 1)d$ So, for the given A.P. $a_n = 5 + (n - 1)3 = 3n + 2$ Also given, last term = 80 $\Rightarrow 3n + 2 = 80$ 3n = 78 n = 78/3 = 26Therefore, there are 26 terms in the A.P.

6. The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term. Solution:

Given. $a_6 = 19$ and $a_{17} = 41$ We know that, n^{th} term $a_n = a + (n - 1)d$ So. $a_6 = a + (6-1)d$ \Rightarrow a + 5d = 19 (i) Similarity, $a_{17} = a + (17 - 1)d$ \Rightarrow a + 16d = 41 (ii) Solving (i) and (ii), $(ii) - (i) \Rightarrow$ a + 16d - (a + 5d) = 41 - 1911d = 22 \Rightarrow d = 2 Using d in (i), we get a + 5(2) = 19a = 19 - 10 = 9

Now, the 40th term is given by $a_{40} = 9 + (40 - 1)2 = 9 + 78 = 87$ Therefore the 40th term is 87.

7. If 9th term of an A.P. is zero, prove its 29th term is double the 19th term. Solution:

```
Given,

a_9 = 0

We know that, n<sup>th</sup> term a_n = a + (n - 1)d

So, a + (9 - 1)d = 0 \Rightarrow a + 8d = 0 .....(i)

Now,
```



```
29<sup>th</sup> term is given by a_{29} = a + (29 - 1)d

⇒ a_{29} = a + 28d

And, a_{29} = (a + 8d) + 20d [using (i)]

⇒ a_{29} = 20d ..... (ii)
```

Similarly, 19th term is given by $a_{19} = a + (19 - 1)d$ $\Rightarrow a_{19} = a + 18d$ And, $a_{19} = (a + 8d) + 10d$ [using (i)] $\Rightarrow a_{19} = 10d \dots$ (iii)

On comparing (ii) and (iii), it's clearly seen that $a_{29} = 2(a_{19})$

Therefore, 29th term is double the 19th term.

8. If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero. Solution:

Given,

```
10 times the 10<sup>th</sup> term of an A.P. is equal to 15 times the 15<sup>th</sup> term.

We know that, n<sup>th</sup> term a_n = a + (n - 1)d

\Rightarrow 10(a_{10}) = 15(a_{15})

10(a + (10 - 1)d) = 15(a + (15 - 1)d)

10(a + 9d) = 15(a + 14d)

10a + 90d = 15a + 210d

5a + 120d = 0

5(a + 24d) = 0

a + (25 - 1)d = 0

\Rightarrow a_{25} = 0

Therefore, the 25<sup>th</sup> term of the A.P. is zero.
```

9. The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term. Solution:

```
Given,

A_{10} = 41 and a_{18} = 73

We know that, n<sup>th</sup> term a_n = a + (n - 1)d

So,

a_{10} = a + (10 - 1)d

\Rightarrow a + 9d = 41 ..... (i)

Similarity,

a_{18} = a + (18 - 1)d

\Rightarrow a + 17d = 73 ..... (ii)

Solving (i) and (ii),
```


 $(ii) - (i) \Rightarrow$ a + 17d - (a + 9d) = 73 - 41 8d = 32 $\Rightarrow d = 4$ Using d in (i), we get a + 9(4) = 41a = 41 - 36 = 5

Now, the 26^{th} term is given by $a_{26} = 5 + (26 - 1)4 = 5 + 100 = 105$ Therefore the 26^{th} term is 105.

10. In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.

Solution:

Given, 24^{th} term is twice the 10^{th} term. We know that, n^{th} term $a_n = a + (n - 1)d$ $\Rightarrow a_{24} = 2(a_{10})$ a + (24 - 1)d = 2(a + (10 - 1)d) a + 23d = 2(a + 9d) a + 23d = 2a + 18d $a = 5d \dots (1)$ Now, the 72^{nd} term can be expressed as

```
are represented by the form of the given A.P.

are a + 72 - 1)d

= a + 71d

= a + 5d + 66d

= a + a + 66d [using (1)]

= 2(a + 33d)

= 2(a + (34 - 1)d)

= 2(a<sub>34</sub>)

⇒ ar<sub>2</sub> = 2(a<sub>34</sub>)

Hence, the 72<sup>nd</sup> term is twice the 34<sup>th</sup> term of the given A.P.
```

11. The 26th, 11th and the last term of an A.P. are 0, 3 and -1/5, respectively. Find the common difference and the number of terms. Solution:

```
Given,

a_{26} = 0, a_{11} = 3 and a_n (last term) = -1/5 of an A.P.

We know that, n<sup>th</sup> term a_n = a + (n - 1)d

Then,

a_{26} = a + (26 - 1)d

\Rightarrow a + 25d = 0 \dots(1)
```



```
And,

a_{11} = a + (11 - 1)d

\Rightarrow a + 10d = 3 \dots (2)

Solving (1) and (2),

(1) - (2) \Rightarrow

a + 25d - (a + 10d) = 0 - 3

15d = -3

\Rightarrow d = -1/5

Using d in (1), we get

a + 25(-1/5) = 0

a = 5
```

Now, given that the last term $a_n = -1/5$ $\Rightarrow 5 + (n - 1)(-1/5) = -1/5$ 5 + -n/5 + 1/5 = -1/5 25 - n + 1 = -1 n = 27Therefore, the A.P has 27 terms and its common difference is -1/5.

12. If the nth term of the A.P. 9, 7, 5, is same as the nth term of the A.P. 15, 12, 9, ... find n. Solution:

Given, A.P₁ = 9, 7, 5, and A.P₂ = 15, 12, 9, ... And, we know that, n^{th} term $a_n = a + (n - 1)d$ For A.P₁, a = 9, d =Second term – first term = 9 – 7 = -2

And, its nth term $a_n = 9 + (n - 1)(-2) = 9 - 2n + 2$ $a_n = 11 - 2n \dots(i)$ Similarly, for A.P₂ a = 15, d = Second term - first term = 12 - 15 = -3And, its nth term $a_n = 15 + (n - 1)(-3) = 15 - 3n + 3$ $a_n = 18 - 3n \dots(ii)$

According to the question, its given that n^{th} term of the A.P₁ = n^{th} term of the A.P₂ $\Rightarrow 11 - 2n = 18 - 3n$ n = 7Therefore, the 7th term of the both the A.Ps are equal.

13. Find the 12th term from the end of the following arithmetic progressions:
(i) 3, 5, 7, 9, 201
(ii) 3,8,13, ...,253
(iii) 1, 4, 7, 10, ...,88

Solution:

In order the find the 12^{th} term for the end of an A.P. which has n terms, its done by simply finding the $((n - 12) + 1)^{th}$ of the A.P And we know, n^{th} term $a_n = a + (n - 1)d$

(i) Given A.P = 3, 5, 7, 9, 201 Here, a = 3 and d = (5 - 3) = 2Now, find the number of terms when the last term is known i.e, 201 $a_n = 3 + (n - 1)2 = 201$ 3 + 2n - 2 = 2012n = 200n = 100Hence, the A.P has 100 terms.

So, the 12^{th} term from the end is same as $(100 - 12 + 1)^{th}$ of the A.P which is the 89th term.

$$\Rightarrow a_{89} = 3 + (89 - 1)2 = 3 + 88(2) = 3 + 176 = 179$$

Therefore, the 12th term from the end of the A.P is 179.

(ii) Given $A.P = 3,8,13, \dots, 253$

Here, a = 3 and d = (8 - 3) = 5Now, find the number of terms when the last term is known i.e, 253 $a_n = 3 + (n - 1)5 = 253$ 3 + 5n - 5 = 2535n = 253 + 2 = 255n = 255/5n = 51Hence, the A.P has 51 terms.

So, the 12th term from the end is same as (51 - 12 + 1)th of the A.P which is the 40th term. $\Rightarrow a_{40} = 3 + (40 - 1)5$ = 3 + 39(5) = 3 + 195= 198

Therefore, the 12th term from the end of the A.P is 198.

(iii) Given A.P = 1, 4, 7, 10, ..., 88 Here, a = 1 and d = (4 - 1) = 3Now, find the number of terms when the last term is known i.e, 88 $a_n = 1 + (n - 1)3 = 88$ 1 + 3n - 3 = 88 3n = 90n = 30

Hence, the A.P has 30 terms.

So, the 12th term from the end is same as (30 - 12 + 1)th of the A.P which is the 19th term. $\Rightarrow a_{89} = 1 + (19 - 1)3$ = 1 + 18(3) = 1 + 54 = 55

Therefore, the 12^{th} term from the end of the A.P is 55.

14. The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference. Solution:

Let's consider the first term and the common difference of the A.P to be a and d respectively. Then, we know that $a_n = a + (n - 1)d$ Given conditions, 4th term of an A.P. is three times the first Expressing this by equation we have, \Rightarrow a4 = 3(a) a + (4 - 1)d = 3a $3d = 2a \Rightarrow a = 3d/2...(i)$ And, 7th term exceeds twice the third term by 1 \Rightarrow a₇ = 2(a₃) + 1 a + (7 - 1)d = 2(a + (3 - 1)d) + 1a + 6d = 2a + 4d + 1 $a - 2d + 1 = 0 \dots$ (ii) Using (i) in (ii), we have 3d/2 - 2d + 1 = 03d - 4d + 2 = 0d = 2So, putting d = 2 in (i), we get a $\Rightarrow a = 3$

Therefore, the first term is 3 and the common difference is 2.

15. Find the second term and the nth term of an A.P. whose 6th term is 12 and the 8th term is 22. Solution:

```
Given, in an A.P

a_6 = 12 and a_8 = 22

We know that a_n = a + (n - 1)d

So,

a_6 = a + (6-1)d = a + 5d = 12 \dots (i)

And,
```


 $a_8 = a + (8-1)d = a + 7d = 22 \dots$ (ii)

Solving (i) and (ii), we have (ii) - (i) \Rightarrow a + 7d - (a + 5d) = 22 - 12 2d = 10 d = 5Putting d in (i) we get, a + 5(5) = 12 a = 12 - 25 a = -13Thus, for the A.P: a = -13 and d = 5So, the nth term is given by $a_n = a + (n-1)d$ $a_n = -13 + (n-1)5 = -13 + 5n - 5$ $\Rightarrow a_n = 5n - 18$ Hence, the second term is given by $a_2 = 5(2) - 18 = 10 - 18 = -8$

16. How many numbers of two digit are divisible by 3? Solution:

The first 2 digit number divisible by 3 is 12. And, the last 2 digit number divisible by 3 is 99. So, this forms an A.P. 12, 15, 18, 21, ..., 99 Where, a = 12 and d = 3 Finding the number of terms in this A.P \Rightarrow 99 = 12 + (n-1)3 99 = 12 + 3n - 3 90 = 3n n = 90/3 = 30 Therefore, there are 30 two digit numbers divisible by 3.

17. An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term. Solution:

Given, an A.P of 60 terms And, a = 7 and $a_{60} = 125$ We know that $a_n = a + (n - 1)d$ $\Rightarrow a_{60} = 7 + (60 - 1)d = 125$ 7 + 59d = 12559d = 118d = 2

So, the 32^{nd} term is given by $a_{32} = 7 + (32 - 1)2 = 7 + 62 = 69$

 \Rightarrow a₃₂ = 69

18. The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P. Solution:

Given, in an A.P The sum of 4th and 8th terms of an A.P. is 24 $\Rightarrow a_4 + a_8 = 24$ And, we know that $a_n = a + (n - 1)d$ [a + (4-1)d] + [a + (8-1)d] = 24 2a + 10d = 24 $a + 5d = 12 \dots (i)$

Also given that, the sum of the 6th and 10th terms is 34 $\Rightarrow a_6 + a_{10} = 34$ [a + 5d] + [a + 9d] = 342a + 14d = 34a + 7d = 17 (ii)

Subtracting (i) form (ii), we have a + 7d - (a + 5d) = 17 - 12 2d = 5 d = 5/2Using d in (i) we get, a + 5(5/2) = 12 a = 12 - 25/2a = -1/2

Therefore, the first term is -1/2 and the common difference is 5/2.

19. The first term of an A.P. is 5 and its 100th term is -292. Find the 50th term of this A.P. Solution:

Given, an A.P whose a = 5 and $a_{100} = -292$ We know that $a_n = a + (n - 1)d$ a100 = 5 + 99d = -292 99d = -297d = -3

Hence, the 50th term is $a_{50} = a + 49d = 5 + 49(-3) = 5 - 147 = -142$

20. Find a₃₀ – a₂₀ for the A.P. (i) -9, -14, -19, -24 (ii) a, a+d, a+2d, a+3d, Solution: We know that $a_n = a + (n - 1)d$ So, $a_{30} - a_{20} = (a + 29d) - (a + 19) = 10d$ Given A.P. -9, -14, -19, -24 (i) Here, a = -9 and d = -14 - (-9) = -14 + 9 = -5So, $a_{30} - a_{20} = 10d$ = 10(-5)= -50(ii) Given A.P. a, a+d, a+2d, a+3d, So, $a_{30} - a_{20} = (a + 29d) - (a + 19d)$ =10d 21. Write the expression $a_n - a_k$ for the A.P. $a, a+d, a+2d, \ldots$ Hence, find the common difference of the A.P. for which (i) 11th term is 5 and 13th term is 79.

(ii) $a_{10} - a_5 = 200$

(iii) 20th term is 10 more than the 18th term. Solution:

Given A.P. a, a+d, a+2d, So, $a_n = a + (n-1)d = a + nd -d$ And, $a_k = a + (k-1)d = a + kd - d$ $a_n - a_k = (a + nd - d) - (a + kd - d)$ = (n - k)d

- (i) Given 11th term is 5 and 13th term is 79, Here n = 13 and k = 11, $a_{13} - a_{11} = (13 - 11)d = 2d$ $\Rightarrow 79 - 5 = 2d$ d = 74/2 = 37
- (ii) Given, $a_{10} a_5 = 200$ $\Rightarrow (10 - 5)d = 200$ 5d = 200d = 40
- (iii) Given, 20th term is 10 more than the 18th term. $\Rightarrow a_{20} - a_{18} = 10$ (20 - 18)d = 10 2d = 10 d = 5

22. Find n if the given value of x is the nth term of the given A.P.(i) 25, 50, 75, 100, ; x = 1000(ii) $5\frac{1}{2}$, 11, $16\frac{1}{2}$, 22,; x = 550(iii) $5\frac{1}{2}$, 11, $16\frac{1}{2}$, 22,; x = 550(iv) 1, 21/11, 31/11, 41/11, ...; x = 171/11Solution:

- (i) Given A.P. 25, 50, 75, 100,, 1000 Here, a = 25 d = 50 - 25 = 25Last term (nth term) = 1000 We know that $a_n = a + (n - 1)d$ $\Rightarrow 1000 = 25 + (n-1)25$ 1000 = 25 + 25n - 25n = 1000/25n = 40
- (ii) Given A.P. -1, -3, -5, -7,, -151 Here, a = -1 d = -3 - (-1) = -2Last term $(n^{th} term) = -151$ We know that $a_n = a + (n - 1)d$ $\Rightarrow -151 = -1 + (n-1)(-2)$ -151 = -1 - 2n + 2n = 152/2n = 76
- (iii) Given A.P. $5\frac{1}{2}$, 11, $16\frac{1}{2}$, 22, ..., 550 Here, $a = 5\frac{1}{2} d = 11 - (5\frac{1}{2}) = 5\frac{1}{2} = 11\frac{2}{2}$ Last term (nth term) = 550 We know that $a_n = a + (n - 1)d$ $\Rightarrow 550 = 5\frac{1}{2} + (n-1)(11\frac{2})$ 550 x 2 = 11 + 11n - 111100 = 11nn = 100
- (iv) Given A.P. 1, 21/11, 31/11, 41/11, 171/11Here, a = 1 d = 21/11 - 1 = 10/11Last term (nth term) = 171/11We know that $a_n = a + (n - 1)d$ $\Rightarrow 171/11 = 1 + (n-1)10/11$ 171 = 11 + 10n - 10n = 170/10n = 17

23. The eighth term of an A.P is half of its second term and the eleventh term exceeds one third of its fourth term by 1. Find the 15th term. Solution:

Given, an A.P in which,

 $a_{8} = 1/2(a_{2})$ $a_{11} = 1/3(a_{4}) + 1$ We know that $a_{n} = a + (n - 1)d$ $\Rightarrow a_{8} = 1/2(a_{2})$ a + 7d = 1/2(a + d) 2a + 14d = a + d $a + 13d = 0 \dots (i)$

And, $a_{11} = 1/3(a_4) + 1$ a + 10d = 1/3(a + 3d) + 1 3a + 30d = a + 3d + 32a + 27d = 3 (ii)

Solving (i) and (ii), by (ii) $-2x(i) \Rightarrow 2a + 27d - 2(a + 13d) = 3 - 0$ d = 3 Putting d in (i) we get, a + 13(3) = 0 a = -39

Thus, the 15^{th} term $a_{15} = -39 + 14(3) = -39 + 42 = 3$

24. Find the arithmetic progression whose third term is 16 and the seventh term exceeds its fifth term by 12. Solution:

```
Given, in an A.P

a_3 = 16 and a_7 = a_5 + 12

We know that a_n = a + (n - 1)d

\Rightarrow a + 2d = 16... (i)

And,

a + 6d = a + 4d + 12

2d = 12

\Rightarrow d = 6
```

Using d in (i), we have a + 2(6) = 16a = 16 - 12 = 4

Hence, the A.P is 4, 10, 16, 22,

25. The 7th term of an A.P. is 32 and its 13th term is 62. Find the A.P. Solution:

Given, $a_7 = 32$ and $a_{13} = 62$


```
From a_n - a_k = (a + nd - d) - (a + kd - d)
= (n - k)d
a_{13} - a_7 = (13 - 7)d = 62 - 32 = 30
6d = 30
d = 5
Now,
a_7 = a + (7 - 1)5 = 32
a + 30 = 32
a = 2
```

Hence, the A.P is 2, 7, 12, 17,

26. Which term of the A.P. 3, 10, 17, will be 84 more than its 13th term ? Solution:

Given, A.P. 3, 10, 17, Here, a = 3 and d = 10 - 3 = 7According the question, $a_n = a_{13} + 84$ Using $a_n = a + (n - 1)d$, 3 + (n - 1)7 = 3 + (13 - 1)7 + 843 + 7n - 7 = 3 + 84 + 847n = 168 + 7n = 175/7n = 25

Therefore, it the 25th term which is 84 more than its 13th term.

27. Two arithmetic progressions have the same common difference. The difference between their 100th terms is 100, what is the difference between their 1000th terms? Solution:

Let the two A.Ps be A.P₁ and A.P₂ For A.P₁ the first term = a and the common difference = d And for A.P₂ the first term = b and the common difference = d So, from the question we have $a_{100} - b_{100} = 100$ (a + 99d) - (b + 99d) = 100a - b = 100

Now, the difference between their 1000^{th} terms is, (a + 999d) - (b + 999d) = a - b = 100

Therefore, the difference between their 1000th terms is also 100.